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Abstract

Research on neighborhoods has relied on administrative definitions that do not co-
incide with agents” decision problems. This produces a spatial misalignment between
administrative and "economic" boundaries that bias research findings and the policies
designed around them. I propose a novel methodology to delineate neighborhoods
using a machine learning algorithm that groups locations based on revealed prefer-
ences. I apply the methodology to Toronto’s industrial and residential neighborhoods
and show that they are not like each other and that they remarkably differ in size and
shape from their administrative counterparts. In particular, economic neighborhoods
tend to have an elliptical shape and to locate around major streets. Moreover, neigh-
borhoods are different across industries or property types. These characteristics have

implications for the study the effects of neighborhood segregation and concentration.



1 Introduction

A neighborhood is a geographically localized community where its members interact
with each other in various ways. Neighborhoods have become an important focus of
policy and research, as economists recognize the importance of interactions in shaping be-
havior and outcomes. Phenomena such as labor-market referrals, crime, disease propaga-
tion, gentrification, segregation, social mobility, agglomeration economies, among many
others; are all phenomena that all arise from interactions that occur within and spill across
neighborhoods.

The standard approach to neighborhoods is to use administrative or legally-defined
boundaries. However, this can be a problem as administrative neighborhoods are delin-
eated as a result of an optimization process that does not necessarily align with agents’
decision problems. For example, postal codes are defined for the purpose of optimizing
mail delivery and census blocks (or tracts) are defined for the purpose of optimizing the
process of a censusﬂ A persistent or even increasing misalignment between ‘legal” and
‘economic’ boundaries that may lead to measurement and inference biases that compro-
mise research findings and the policies designed around them.

For these motives, I propose a revealed preference approach to delineate economic
neighborhood boundaries. In particular, I develop a machine learning algorithm that
uses historical geocoded location choices of agents to identify neighborhoods as a col-
lection of similar-neighboring-choices. The algorithm starts by using a dataset of historical
location choices and assigns them to a geocoded hexagon gridE| Each location (a cell
in the grid) has a series of geographical and non-geographical characteristics. Then, the
algorithm incorporates revealed preferences by computing the raw propensity score asso-
ciated to a location choice given their characteristics. Finally, the algorithm agglomerates
adjacent cells so that so that the resulting neighborhoods minimize the within variance of
the propensity score conditional to differences in propensities score among locations that
are lower than a given "threshold’.

The threshold defines where one neighborhood ends and another begins. The use of
thresholds is unavoidable for any approach that seeks to discretize a continuous territory
(de Bellefon et al., 2019). Intuitively, the threshold affects the size of the neighborhoods.
A small threshold will deliver neighborhoods that are composed of more similar cells
than a larger threshold. This is desirable as it implies more homogeneous neighborhoods.
However, a threshold that is too small results in neighborhoods that are too small to make

1School and political districts are another potential source but their delineation is often more obscure
and involve many objectives.
2In principle any side size is possible and is only constrained to computational power.



inferences about the unobservable differences across them as they will account for most
(if not all) of the variance of the propensity score between neighborhoodsﬁ Conversely, a
threshold that is too big makes neighborhoods that are so big that they account for most of
the within and less of the between variance of the propensity score across neighborhoods.

The spatial distribution of location choices has a direct effect on how sensitive the
results are to changes in the threshold and how likely is to get to the extreme cases of
neighborhoods that are too small or big. Cities with an uneven distribution of economic
activity will have a distribution of bilateral differences that is highly skewed, whereas
more even cities have a distribution of bilateral differences that is more uniform. This
implies that applying the algorithm to uneven cities will result in neighborhoods that are
less sensitive to the threshold. Moreover, this observation also implies that even under
large thresholds, those neighborhoods are less likely to be "too” big.

In order to understand better the choice of a threshold, I carry out a set of simulations.
I simulate the location choice of 100,000 agents in two cities for 100 thresholds. The first
city is uneven, with agents that cluster around certain locations. The second city is even,
with agents that locate randomly across space. The results of the simulation confirm
the intuition. Depending on the threshold, neighborhoods can be too big at very large
thresholds or too small at tiny thresholds. Moreover, the boundaries of the neighborhoods
are more stable in the uneven city. This implies that in order to obtain neighborhoods
with boundaries that are less sensitive to the threshold, the algorithm needs a context in
which location choices are clustered in the space. This stability implies that applying the
algorithm to uneven cities does not require an extensive threshold sensitivity exercise, as
we can be confident that the threshold will not make a huge difference in the resulting
neighborhoods.

The misalignment between ‘legal” and ‘economic” boundaries produces three issues
that the algorithm aims to solve. First, urban areas that are defined too narrowly or too
broadly may present the modifiable areal unit problem by, for instance, misstating the
extent of urban sprawl or by missing important positive or negative spatial spillovers
of urban policy interventions. By identifying neighborhoods using economic decisions,
these neighborhoods decrease the relevance of the modifiable area unit problem (MAUP)
as these neighborhoods are by construction "the’ unit of analysis at which agents are mak-
ing choices (Openshaw, |1983; Briant et al., 2010)E| Moreover, by using the raw propensity

score to summarize the correlation between choices and location characteristics, the al-

3In the limit, a threshold that is tiny makes the algorithm useless as it stops in the first iteration and only
agglomerates cells that have the same propensity score.

“We can also think that this algorithm is in essence identifying the spatial choice set agents consider
when making location choices.



gorithm incorporates the economic concept that a choice is the result of incorporating
trade-offs. This implies that neighborhoods might be different across agents as each type
of agent values location characteristics differentlyﬂ

Second, assumptions of symmetric interactions within neighborhoods are common in
research at the neighborhood level (Topa and Zenou, 2015)E| Symmetric interactions are
more likely to hold at smaller geographies as a significant portion of social interactions
occur at very close physical distance among agents. However, the smaller the geogra-
phy the less the number of agents used for estimation, leading to a granularity problem
(Dingel and Tintelnot, 2020). By agglomerating cells with similar propensity scores, this
algorithm addresses both problems by delivering bigger neighborhoods composed by
very similar cells, implying both less granularity and more symmetric interactions

And third, structural models that use Type 1 distributions to match the spatial distri-
bution of economic activity tend to assume uncorrelated shocks. In the study of neigh-
borhood effects, this assumption usually takes the form of assuming that interactions are
not only symmetric within neighborhoods but are also incomplete across them (Gibbons
et al., 2015). Because of the misalignment between "legal” and "economic” neighborhoods,
this is unlikely to hold in "legal” neighborhoods which implies that identification of the
neighborhood effects fails (Gibbons et al., 2015). Without making assumptions about the
network structure of interactions between agents within and across neighborhoodsﬂ this
algorithm delineates neighborhoods that are distinct in propensity score from their im-
mediate neighbors. This implies that there exists zero spatial correlation between the
location choices between a neighborhood and their immediate neighbors which makes
them more feasible to understand research questions that focus on the (very)local aspects
of the propagation of shocks and spillovers.

I present two applications of the algorithm for the Greater Toronto Area and use the

SFor example, location amenities such as the proximity to a school or to family care are presumably
valued more by households than companies, whereas proximity to delivery services or banking services
are presumably valued more by companies than households.

®This is translated in assumptions about the way one’s residential neighborhood affects one’s outcomes.
In particular, a common assumption takes the form of assuming that there is no geography-level correlation
in unobserved attributes among residents, after taking into account the broader reference group.

"This is clearly under the assumption that similar propensity scores are associated to a collection of
similar agents making similar location choices.

8The critique has also arises in the trade literature that use these distributions more frequently following
the seminal work by Eaton and Kortum|(2002). In particular, Lind and Ramondo|(2020) points out that these
research has aim to capture the Ricardian insight that different degrees of correlation in productivity lead
to heterogeneity in the gains from trade by incorporating sectors, multinational production, or global value
chains. However, the way the literature incorporates correlation is still restrictive, potentially removing
empirically relevant sources of heterogeneity. Concretely, although multi-sector models create correlation
because each sector is present in many countries, productivity is independent across sectors, implying that
sectors do not share technologies.



results to compare how ‘legal” (in this case postal codes) and ‘economic” neighborhoods
differ around these issues. The first application uses location choices of all firms with
the aim to provide ‘industrial” neighborhoods by industry. Location characteristics in
this application are given by access to amenities (Banks, Hotels, Touristic Attractions,
Parks, etc) and market access measures for upstream, competing and downstream firms.
The second application uses real estate transactions with the aim to provide "residential’
neighborhoods by property type. Location characteristics in this application are given by
the same measures of access to amenities as in the case of industrial neighborhoods and
measures of the characteristics of real estate being sold in a given period of time.

Results show that neighborhoods do not look like postal codes. Moreover, they show
that industrial and residential neighborhoods do not look alike either. Industrial neigh-
borhoods tend to be long with a centroid located around main streets, whereas residential
neighborhoods are shorter with a centroid located around secondary streets. Separat-
ing neighborhoods by industry leads to industry-specific neighborhoods, and shows that
neighborhoods also differ across industries. In particular, manufacturing and entertain-
ment neighborhoods are larger on average than retail and services neighborhoods, which
can be related to the degree of tradability of the goods and services provided by each of
those industries.

Separating residential neighborhoods by property type also lead to neighborhoods
that are different. Condo neighborhoods tend to be larger and longer than House neigh-
borhoods, which makes sense in a city like Toronto where condos tend to locate around
main streets and houses tend to locate along secondary streets. Results also show that
visual inspection and inside knowledge of the city at study is important when evaluating
the quality of the results. In particular, visual inspection shows that the results for indus-
trial neighborhoods are better than the ones for housing neighborhoods. The main differ-
ences between both applications that might lead to these results is that the distribution of
activity for the 'residential’ neighborhoods is not as skewed as the case for ‘commercial’
neighborhoods, which makes sense as real-estate tends to be equally spread across the
city.

Turning into the comparisons between ‘legal’ and "economic’ neighborhoods. First,
in order to analyze how these neighborhoods might lead into different conclusions, I
analyze the prevalence of a Zipf’s law for neighborhoods. In geography, Zipf’s is an
empirical law about the size distribution of spatial units, in particular cities. Taking it
to neighborhoods, if the law holds perfectly, then the neighborhood size distribution can
be approximated with a Pareto distribution with shape parameter equal to one. If the
shape parameter is equal to one then the power law implies that, within a city, the largest



neighborhood is roughly twice the size of the second largest neighborhood, about three
times the size of the third largest neighborhood, and so on. If the shape parameter is
greater than one indicates that the size is more evenly distributed across neighborhoods
than what the Zipt’s law predicts. I perform this exercise for counts (number of firms
or number of real estate transactions), and area sizes and find that the distribution of
size is different between postal codes and economic neighborhoods signaling that if the
method proposed in this paper correctly identifies the choice set then this neighborhoods
decreases the relevance of the modifiable area unit problem.

Second, in order to analyze the degree to which the zero-spatial correlation assump-
tion is satisfied, I compute the Moran| (1950)’s I index of spatial correlation. This index
indicates the correlation between a variable and its surrounding Valuesﬂ A positive
Moran’s I indicates that similar observations are closer to each other, while a negative
value indicates that dissimilar values are closer to each other, and values around zero
would indicate that there is no spatial correlation, and instead, observed values are ran-
domly distributed. I perform this exercise for both counts (number of firms or number of
real estate transactions) and propensity scores, and find that the algorithm delivers neigh-
borhoods that present significantly lower spatial correlation than that of postal codes for
all measures across industries and real estate property types. In particular, and consis-
tent with the intuition of the algorithm, neighborhoods present zero or negative spatial
correlation between the number of firms located (or transactions performed) in a neigh-
borhood and their neighbors. In terms of propensity scores, even though neighborhoods
present positive spatial correlation this arises mechanically and is still substantially lower
than that of postal codesm

This paper is contributing to the intersection of two different literatures: the litera-
ture in urban economics that seeks to define spatial units and the literature that brings
machine learning methods to economics. The most direct contribution is to the litera-
ture that seeks to define spatial units. A long-standing focus in this literature has been
to provide a rigorous definition of cities. In fact, this literature has received a renewed
interest the last decade due to urbanization concerns about urbanization concerns in de-
veloping countries and the availability of new sources of detailed geographical data. The
latter allow researchers to not only develop algorithms that enable a better delineation of

9This index can be computed globally and locally. The global index summarizes how the whole dataset,
or in this case the city of Toronto, is spatially correlated. The local index decomposes the index by neigh-
borhood and summarizes how each neighborhood is spatially correlated to their neighbors.
19This result arises mechanically. Propensity scores are calculated using market access measures calcu-
lated by aggregating the underlying measure within with a distance decay function. These market access
measures smooths out the distribution of the underlying variables which implies a propensity score that is
also smoothed across locations.



cities in general, but that also enable countries that do not have detailed data on commut-
ing patterns (to give an example of data commonly used by some developed countries,
see Duranton| (2015), for a review) to provide consistent delineation of cities within and
across countries These newly available datasets include lights (night and/or day-time)
data from satellite data (Baragwanath et al., 2019} (Ch et al., 2020), gridded population
data (Henderson et al., 2019; Moreno-Monroy et al., 2020) and map buildings (Arribas-
Bel et al., 2019; de Bellefon et al., 2019).

This paper contributes to this literature in three fronts. Firstly, this paper focuses on
delineating neighborhoods within cities which has been absent in the delineation liter-
ature even when considering the increasing impact of neighborhoods in research and
policy. The second contribution is introducing a machine learning algorithm that uses
geocoded location choices, as indication of revealed preferences for a certain location, to
delineate neighborhoods within a city. This algorithm is flexible enough to be adapted to
different scenarios and research questions. The third contribution is the enablement of the
algorithm flexibility. It introduces the use of points of interest, or real estate transactions
data, to understand the conditions -and data requirements- under which this algorithm
provides neighborhoods that can be useful for inference about the differences within a
city.

More generally, this paper contributes to the increasing literature that brings data-
based algorithms and machine learning methods to economics. Though the adoption
of these methods in economics has been slower, their use in empirical work has gained
momentum during the last decade. The observation made by Mullainathan and Spiess
(2017) and |Athey and Imbens (2019) that machine learning not only provides new tools,
but also solves different problems than current empirical methods, has increased the ap-
peal to the community. This is particularly relevant in this case, as the objective of this
paper is not to estimate a parameter for the relationship between location choices and
their characteristics, but to find generalizable patterns in the characteristics of location
choices that help us to predict the neighborhood at which these choices are located. This
observation is what makes these methods great to be applied to new kind of data to at-
tempt to answer traditional questions such as measuring economic activity using light
satellite data, and to answer new questions like the one this paper attempts to answer:
delineating neighborhoods using geocoded location choices.

These benefits have also been taken to the literature delineating geographical units.

Commuting patterns are indicators of journey-to-work relationship between two areas which generally
allows researchers to determine whether workers belong to the same local labor market and, hence, if they
can be considered to form part of the same urban area.



Two examples of this recent research are Galdo et al.|(2019) and |Arribas-Bel et al.| (2019).
Galdo et al.| (2019) use a variety of data sources combined with human judgement to train
a small subsample of locations in India, then the trained algorithm is used to predict
all the cities in the country. Arribas-Bel et al. (2019) delineate all cities in Spain using a
detailed map of all buildings for Spain that are then use to feed a clustering algorithm that
draws boundaries around clusters of buildings that reach a minimum density threshold.
This paper contributes to this literature by introducing an algorithm that not only uses
highly detailed data to make predictions but also incorporates economic theory in its core
elements by using location choices as a signal of revealed preferences.

The rest of the paper is organized as follows: Section 2 briefly describes the approaches
the literature has used to delineate urban areas, it introduces the algorithm, and discusses
its potential benefits relative to other approaches. In an attempt to better understand to
which contexts this algorithm can be applied, Section 3 introduces a simulation exercise
that studies the sensitivity and stability of the results of the algorithm under two extreme
distributions of economic activity. Section 4 provides two applications of the algorithm
for the Great Toronto Area and discusses the resulting economic neighborhoods. Section
5 establishes basic facts about the differences between "economic” and "legal” neighbor-
hoods, and Section 6 concludes.

2 Methodology

Thinking about neighborhoods as a collection of very similar cells provides a clear reason
to why machine learning clustering methods are a good way to identify them. Cluster-
ing methods have the goal of grouping a collection of objects into subsets or “clusters,”
such that those within each cluster are more closely related to each other than to ob-
jects assigned to other clusters. These methods group observations based on a definition
of similarity (or dissimilarity) provided by the researcher. The most popular clustering
method in economics is the K-means algorithm (Hartigan and Wong), (1979) that provides
an efficient and computationally light way to find a previously defined number of clus-
ters ”K” As pointed out by |Athey and Imbens| (2019), choosing the number of clusters
Kis difficult because there is no direct cross-validation method to assess the performance

of one value versus the other. Moreover, this method, although modifiable to include

12The algorithms defines K centroids elements that are sufficiently spread out over the characteristics
space. Given this set of centroids, it then assign each observation to the cluster so that it minimizes the
dissimilarity between the unit and the centroid of the cluster. It then updates the centroid and repeats the
process until all observations to a cluster.



adjacency constraints might still provide spatially non-compact clusters, which is an im-
portant aspect of the economic definition of neighborhood this paper is focusing on.

Instead, motivated by |Rozenfeld et al.| (2011) bottom-up algorithm to delineate cities, I
extend Ward| (1963)’s unsupervised agglomerative hierarchical algorithm to include eco-
nomic theory. As is, the original algorithm has a very important feature for the delineation
of economic neighborhoods within a city. This algorithm does not require defining a pri-
ori the size or the number of neighborhoods as most clustering methods do (including
k-means)ﬁ In fact, the algorithm builds up all possible neighborhoods based on the dis-
similarity in characteristics between groups of location. Once all possible neighborhoods
are defined, the algorithm requires the researcher to set a maximum threshold for which
a neighborhood is set to be different from another. This threshold is the one that ends up
defining the number of neighborhoods that the algorithm delivers.

Even though the algorithm is more flexible than other clustering methods, it comes
with an important computational burden. First, the algorithm requires a full bilateral
dissimilarity matrix between all geographical cells. The focus of the algorithm is to build-
up neighborhoods starting from very small geographies, quickly incresing the size of this
matrix as the size of this small geographies decreases. For example, the applications in
section (4) are for the Greater Toronto Area that has a total area of about 7, 124.15 km?.
The whole area is divided by 75-meter hexagon grid cells whose area is about 0.015 km?
each, which implies about 474,943 cells to cover the entire city@ This would imply a
dissimilarity matrix of size 474,943 x 474,943 = 225 x 10° which would roughly require
about 14TB of RAM to run if each element of the matrix is a real number['% This extensive
memory requirement is clearly infeasible even with the current computational power.
Second, if we want to apply the algorithm using more than one characteristic, then the
memory requirement increases as many times as characteristics we want to cluster with.

To reduce this burden and make the application of this algorithm feasible, I take two
features from the conceptual definition of a neighborhood and implement them in the
algorithm. First, neighborhoods are spatially compact. Including adjacency constraints
reduces the set of cells the algorithm compares with from all possible cells to only those

13Please refer to the clustering documentation of the python machine learning library ’scikit-learn’ out of
which this algorithm is based on. This library has been in continues development since (Pedregosa et al.,
2011) was published.

“The actual application has even more cells (740,286) as it also includes parts of Lake Ontario and a
buffer area so that all points included in the border of the GTA are also included in the exercise.

15 Actually, the matrix is composed by floats which is a number representation used in computing for real
numbers. There are different types that differ by precision (or number of decimals). I chose to use 64bytes
floats (double) that use 64 bytes each and provide precision up to 15 decimals.



that are immediately adj acentﬁ This constraint not only ensures spatially compact neigh-
borhoods but it also importantly decreases the memory requirement of running the algo-
rithm. In particular, this modification implies that we can use a sparse square matrix
instead of the full square matrix. This matrix is populated with the bilateral dissimilar-
ity between a cell and their immediate neighbors (12 in the case of an hexagon grid) and
an arbitrarily large constant number for the rest of the elementsm This implies that the
number of elements of this dissimilarity matrix becomes 474,943 x 12 = 5 x 10° plus the
arbitrarily large constant number, implying a memory requirement of about 400MB RAM
which is manageable in most modern computersm

Second, neighborhoods are the result of agents making location choices. Assuming
that all the information about all potential alternative neighborhoods is included in the
probability that an agent chooses a give location, the propensity score summarizes how
those choices are correlate with location characteristics and decreases the number of char-
acteristics the algorithm is using to define the neighborhoods to just one while at the same
time considering how some agents might have different preferences for location. Apply-
ing the algorithm to the propensity score is very similar in spirit to taking Rosenbaum
and Rubin (1984)’s propensity score stratification to an spatial setting Within each
propensity score stratum (neighborhood in this case), treated and untreated subjects have
roughly similar values of the propensity score. Therefore, when the propensity score has
been correctly specified, the distribution of measured baseline covariates will be approx-
imately similar between treated and untreated subjects within the same stratum. Stratas
are formed by defining a threshold (or caliper) that determines how different propensity
scores have to be in order to be assigned to different groups.

After implementing these two features, neighborhoods are constructed by grouping
together contiguous cells based on the bilateral differences in the propensity of observing
an agent. After computing the raw propensity score PY = Pr (d; = b) that is cell-specific,

I compute a dissimilarity matrix by calculating the bilateral euclidean distance between

16The idea of incorporating these type of constraints to Ward| (1963)’s algorithm mainly started in with
Michel et al|(2012)’s machine learning application to medical imaging that cluster functional Magnetic
Resonance Imaging (fMRI) data into contiguous (three-dimensional) brain regions.

7This number has to be at least larger than the threshold.

18This is consistent ? results for genome studies that shows that the implementation of adjacency
constraints to Ward| (1963)’s agglomerative algorithm reduces the space requirements from O(mn?) to to
O(mnh) where m is the number of characteristics being considered, # is the number of observations (in this
case cells) being clustered, and / is number of neighbors to which each element is allowed to be linked to.
Moreover, is also reduces the time required to run (time complexity) from O(mn?) to O(n(h + log(n))).

9This method has been proved to significantly reduce the bias due to measured confounders when
estimating linear treatment effects. Moreover, increasing the number of strata used should result in im-
proved bias reduction, although the marginal reduction in bias decreases as the number of strata increases
(Cochran|, [1968)).



adjacent cells. This creates a sparse matrix populated by non-zero elements around the
diagonal and an arbitrarily large number for the rest of the elements. The algorithm starts
with each cell as a neighborhood by itself. Further iterations merge one neighborhood at
a time so that the bilateral distance between the neighborhood and the new elements
are below a given threshold and minimizes the within cluster variance in the propensity
score.

Specifically the algorithm works as follows. Let P = {P; B | the set of all cell-level
probabilities to be clustered. A neighborhood is a subset of P. The loss of information
when grouping objects into a neighborhood N C P is quantified by the Error Sum of
Squares, ESS:

I(N) =Y | Pl Py |2
P

where Py = n~ 1Y, P! is the centre of gravity of N and # is the number of cells in the
neighborhood. Starting from a partition {Nj, ..., N;} of P, the loss of information when
merging two neighborhoods N, and Nj is quantified by:

6 (N, Np) = I(N, UNy) — I(Ny) — I(N,).

This is what is known as the Ward’s linkage and it is equal to the variation of within-
neighborhood sum of squares after merging two neighborhoods. The algorithm starts from
the trivial partition {Nj, ..., Ng }with B singletons neighborhoods N; = {Pi}. The algo-
rithm then creates a sequence of partitions by successively merging the two adjacent
neighborhoods whose linkage ¢ is the smallest. The algorithm finalizes when all objects
have been merged into a single cluster. Every step in this agglomeration is recorded and
the final set of neighborhoods { N} is identified at the point in which the within neigh-
borhood variance is minimized given that the distance between neighborhoods is below
a predetermined threshold J. The algorithm is summarized in Algorithm .

3 Simulations

Besides geo-coded data of location choices, the algorithm requires two inputs from the
researcher. First, it requires an specification for the propensity score that leads to cell
specific probabilities. This specification will vary depending on the application and the
nature of the underlying economic process that drives agents” location decisions. Second,
it requires a predetermined threshold § that provides a limit to how big can the loss of
information J can be when merging two neighborhoods. This threshold is directly related

10



Algorithm 1 Propensity Score Agglomerative Spatial Strata-Clusters

For a given data set P = {P! B |, the algorithm is as follow:

1. Initialize the set of neighborhoods to be {Nj,...,Ng} where, fori = 1,...,B, the ith
neighborhood is the i" datum, N; = {P!}

2. Compute the dissimilarity between all pairs of neighborhoods, that is, compute
0 (Ny, Ny) for all u < v € {adjacent,}

3. While there is more than one neighborhood in the set of neighborhoods:

(a) Merge a pair of neighborhoods which have minimal dissimilarity. Given in-
dices u’ < v’ such that § (Ny, Ny) = min;;6 (Ny, Ny) and 6 (N, N,) < 6 set
Ny = Ny U Njs and remove N from the set of neighborhoods

(b) Compute the dissimilarity between the new neighborhood N; and all other
neighborhoods in the set of neighborhoods

4. The final set of neighborhoods { N'} is defined at the point in which the within neigh-
borhood variance is minimized given that the dissimilarity between neighborhoods
is below a given threshold 6.

to the size of the resulting neighborhoods, as having a threshold too small will result in
neighborhoods that are composed of only one cell, whereas having a threshold too big
could presumably result in just one big neighborhood composed by all cells.

Provided there is a good specification for the propensity score available, this sub sec-
tion analyzes the effect that different applications (represented by two spatial distribu-
tions of geocoded location data) and different thresholds might have in the resulting
neighborhoods. This results in the simulation of 100,000 agents location choices in two
cities, the first where agents locate randomly in the space, and the second where agents
cluster next to each other around 50 sub centers. These two simulations can be interpreted
in the context of firms making location choices under the presence or absence of agglom-
eration economies. In the presence of agglomeration economies, firms incorporate the
benefits of locating next to each other when making location choices and that results in
tirms clustering whereas in the absence of agglomeration economies, firms would spread
out across the city@

These simulations are performed following an Homogeneous Poisson Point Process

20 Another way to interpret this exercise is in the context of household location choices. When household
preferences for location include other household choices (such as when households choice location based
on school quality or based on access to certain rival amenities) it could result into more clustering. How-
ever, then when they do not include other household choices or the distribution of amenities mimics the
preference of households for location then which clustering of house location choices might be less relevant.

11



and a Clustered Poisson Point Process and then aggregating these points into hexagon
grid cells of 1km length@ Figure [1| shows how the simulated location choices result
in different distributions of economic activity in the space after aggregating them into
their respective grid cells. It clearly shows higher concentration in some areas for the
clustered scenario and no clear concentration in the random scenario. This is consistent
with the density as it shows that the distribution of probabilities is centered at zero for
the clustered point process with a long right tail (which is consistent with a high standard
deviation (the red line) of the propensity score) showing that even though most cells
have zero agents, there are some few hexagon cells that concentrate higher most of them.
In comparison, the random process implies a probability centered in a positive number
with a support entirely in positive numbers but an order of magnitude smaller than the
clustered case showing that even though there is no high concentration, most hexagon
cells have a positive probability.

Given these two environments, the performance of the algorithm can be measured by
the degree in which the results mimic what we observe in their distributions. In particular,
at a given threshold, we would expect to detect fewer and clearer neighborhoods for the
case of the clustered point process relative to the case of the random cluster point process.
Moreover, we should expect that increasing the threshold would quickly lead towards
having all cells merged together into one neighborhood in the random case, whereas
it would lead to a few very stable neighborhoods surrounded by zero-probability cells
in the clustered case. In fact, this provides us with the main data requirement of this
methodology. In order to identify neighborhoods that are meaningful we need an uneven
distribution of economic activity with clear patterns of concentration. Hence, we need a
context in which economic agents preferences for location are skewed towards certain
parts of the city.

Following the propensity score literature, I set the threshold (or caliper) as a function
of the standard deviation of the propensity score and run the algorithm in both environ-
ments for 100 different values starting from 0.01 standard deviations and ending in 15
standard deviations@ Figure [2| shows the resulting neighborhoods for 6 evenly spaced
thresholds from 0.01 to 15 for a total of 100 thresholds. Visually, a neighborhood is com-
posed by all the cells that contiguously share the same color, so even though there are

2IFor more details on how this simulation is performed please refer to|Lomax et al.[(2019) and the doc-
umentation of the python package pointpats from the Python Spatial Analysis Library (PySAL) ongoing
project that is based on|Rey and Anselin| (2007).

22TODO: Explain why too many standard deviations still leave singletons (because the threshold is
in propensity score terms and I(N, U Ny) is in ESS which is equal to the propensity score when is a
singleton). Maybe think a way to re-define the threshold in those terms.
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Figure 1: Propensity score distribution: Random vs Cluster Processes
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some repeated colors, if they are not attached that means they do not belong to the same
neighborhood@

The algorithm correctly identifies locations with high concentration as neighborhoods
in the clustered simulation while it incorrectly identifies locations as neighborhoods in
the random simulation@ This means that even though the algorithm is capturing some
neighborhoods in the random case, these are meaningless as, by construction, there are no
big differences between cells in this scenarioEl In contrast, the neighborhoods identified

in the clustered case have meaning as they are composed by very similar cells with non-

23This is thanks to the adjacency constraint in the algorithm which forces compactness in the resulting
neighborhoods.

24By construction, the random environment is composed by many cells with very similar (close to zero)
probabilities, while the clustered environment is composed by cells that have similar probabilities only
around 50 randomly located sub centers and zero probability elsewhere.

2The algorithm joins neighborhoods based on the the minimization of the loss of information . At the
starting point, the loss of information between joining one cell with their immediate neighbors is given by
the bilateral difference between cell-level propensity scores.
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zero probabilities that are around the sub centers.

In addition to the degree in which neighborhoods are correctly identified or not, an-
other aspect that is of interest is how the results vary while increasing the threshold.
Figure 2| shows that the random case starts with a higher number of neighborhoods than
in the clustered case and quickly decreases to around 5 big neighborhoods when setting
the threshold to 15 standard deviations. In contrast, even though the clustered case starts
with a few hundred neighborhoods, they are always around their respective sub centers
and they stay that way when increasing the threshold, so that even though the compo-
sition of the neighborhood is less homogeneous in that case, the neighborhoods that the
algorithm identifies are still composed by cells that are very similar to each other and
different from the ones outside of those neighborhoods.

As noted before, the threshold in this algorithm mimics the use of a caliper in the
propensity score literature. This implies a trade-off between the homogeneity of cells
within a neighborhood and the number of neighborhoods. A small threshold will lead to
neighborhoods that are composed by cells that share a very similar propensity score at the
expense of having too many neighborhoods or no neighborhoods, leaving no use for the
algorithm. A large threshold will lead to neighborhood that are composed by cells that
have heterogeneous propensity scores with the benefit of delivering a few neighborhoods
substantially decreasing the spatial dimensionality of the data.

Depending on the application and identification strategy the researcher is trying to
use, the trade-off between within and between neighborhoods homogeneity might be
more or less relevant. For example, if we are using fixed effects to control for the variation
between neighborhoods then we need to be enough variance left within neighborhoods
so that the within coefficients are identified. In contrast, if for instance, we want to un-
derstand how demographic characteristics vary across neighborhoods we might want to
be sure that there is enough variance between neighborhoods so that the comparison is
meaningful.

By doing a variance decomposition, Figure {3 shows how this trade-off evolves while
the threshold increases. The two lines represent the percentage of the total variance that
is explained by the between (or MSS) versus the within (RSS) variation in propensity
score. As expected, while the threshold increases, the variance explained by the within
variation increases as neighborhoods are bigger and are composed by more heterogenous
cells. In contrast, the variance explained by the between variation decreases as there are
less number of neighborhoods and those neighborhoods are more similar to each other.
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Figure 2: Results

(a) Poisson Random Process

0.01 std. deviations 0.0459 std. deviations 0.1988 std. deviations
N=3614 clusters N=3614 clusters N=3430 clusters

0.8609 std. deviations 3.7276 std. deviations 15.0 std. deviations
N=1160 clusters N=102 clusters N=5 clusters

(b) Poisson Cluster Process

0.01 std. deviations 0.0459 std. deviations 0.1988 std. deviations
N=640 clusters N=589 clusters. N=475 clusters

0.8609 std. deviations 3.7276 std. deviations 15.0 std. deviations
N=233 clusters N=74 clusters N=8 clusters

An interesting result from this exercise is the difference in the speed at which the
within variation increases or the between variation decreases. For the random case, the
within variation quickly overtakes the between variation, whereas in the clustered case
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this is never the case. In fact, up until around 7 standard deviations, the within variation
remained more or less constrained to represent less than 20% of the total variation with no
big changes between different thresholds. This implies that under a clustered scenario,
neighborhoods are more stable and are subject to less changes than under the random
scenario.

To summarize, the simulation exercise implies that in order to obtain meaningful and
stable neighborhoods an uneven distribution of location choices is needed. This will not
only make the algorithm obtain clear differences between neighborhoods but it will also
make the algorithm less sensitive to the definition of the threshold, and hence, produce
neighborhoods that are more stable across thresholds. These results provide good news
in contexts where there exist high concentration of economic activity, as given the compu-
tational burden associated with taking this to smaller grid cells, we need to be confident
that the threshold will not make a huge difference in the resulting neighborhoods.

Figure 3: ANOVA across Thresholds
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4 Economic Neighborhoods

One of the main advantages of this algorithm is that is flexible enough to be applied
to different contexts. However, the previous section showed that there are certain data
requirements that are needed in order to obtain sensible neighborhoods. In this section,
I present two applications for the Great Toronto Area to illustrate these findings and to
turther analyze the properties of the algorithm. The applications use geographical data
on land use alongside location choice data for two different type of agents: firms and
households.
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The first application aims to identify industrial neighborhoods using points of interest
data that includes all firms and their establishments in the city@ The second application
aims to identify residential neighborhoods using the universe of real estate transactions
captured by Multiple Listing Services (MLS). The key feature that the algorithm exploits
from the datasets for both applications is that they are datasets that captures revealed
preferences. This means that each observation represents the optimal choice of an agent
given the characteristics of the chosen option compared to all possible alternatives. The
whole data used is shown in Figure

It is important to note that these applications do not attempt to answer the question
of what determines location choices as there is no identification strategy to deal with
the identification problems associated with the estimation of the coefficients associated
with that decision. The aim of this exercise is to show the capabilities of the algorithm
in delivering neighborhoods that are meaningful and that will help us understand the
similarity of location choices over the space and across agents. In this setting, we can
think of the propensity score as playing a mechanical role in balancing the covariates
associated with the location choice. This is in fact how propensity scores have started to
be seen in the matching literature, in which the role of the specification is to lead to an
accurate approximation of the conditional expectation of choosing a location given the
covariates (Imbens, 2015).

As mentioned in section (@), the Great Toronto Area has a total usable area of about
7,124.15 km? divided into 75-meter hexagon grid cells that comprise 474,943 (740,286
when including water bodies and a buffer zone) grid cells of about 0.015 km? each. For
each application, the process consists of assigning each choice observation to one of these
grid cells and geographically matching them with the location characteristics. Location
characteristics are derived from the same datasets of location choices and from an ad-
ditional dataset that contain land uses for the whole city. Then, a propensity score is
calculated based on a combination of the location characteristics that presumably affect
the underlying decision process of the agents. Finally, the algorithm is applied.

The next subsections explain the details about the data and the propensity score spec-

ification used in each application.

26A point of interest, or PO, is a specific point location that someone may find useful or interesting.
When thinking about a POI, most consumers would refer to hotels, campsites, fuel stations or any other
categories used in modern automotive GPS systems. However, in general, POI data also includes locations
for all kind of firms as is not only used by end consumers traveling within or across cities but also by logistic
and shipping companies.
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Figure 4: The Data
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4.1 Industrial Neighborhoods

The underlying location choice problem for firms is one of profit maximization. Under
profit maximization, the observed location is the one that maximizes the expected profits
relative to all other possible locations. This implies that the probability that a firm locates
in a particular place depends on how the characteristics of that location affect profits rel-
ative to those of all other locations. Therefore, the explanatory variables to be considered
are those specific to location believed to have an impact on the expected profits of the
firm. In this application, the variables I consider will measure agglomeration economies,
input prices, and demand conditions. In the following paragraphs, I explain the data
used to measure these variables and the methodology to do so.

The main dataset used to delineate the industrial neighborhoods is therefore a dataset
of firm location choices. These location choices comes from the 2012 Enhanced Points of
Interest (EPOI) files produced by DMTI Spatial Inc. that is a national database of over 1
million Canadian businesses and recreational points of interest at the establishment level,
and arguably comprises the universe of businesses and recreational points of interest in
major metropolitan areas, such as the GTA. For each EPO], the dataset includes the North
American Industry Classification System (NAICS) industry classification code, name, and
address. I filter this dataset to only include firms that are located in the GTA and belong
to the manufacturing (NAICS 3), retail (NAICS 4), service (NAICS 5), or food and lodging
(NAICS 7) sectors. This leaves us with a total of 125,435 firms/establishments in the area.
A snapshot of the data can be found in Figure

In general, agglomeration economies consist of those externalities resulting from the
spatial concentration of economic activity. The benefits of this agglomeration can come
from the concentration of firms in the same industry as well as from concentration in sup-
pliers or buyers. For estimation purposes that will be clear in the next few paragraphs,
this paper assumes that all firms in the same industry are equal and face the same con-
ditions. That means that to measure the level of agglomeration, I only need to focus on
the measurement of upstream and downstream firms. To do this, I combine the location
choices data with the 2012 Input-Output Tables produced by Statistics Canada. These
tables allow me to obtain the relative importance of firms of a certain industry for the
production of a firm from another industry. This allows me to measure the upstream and
downstream relationship in a given place. In particular, I compute the weighted sum of
tirms upstream and downstream where the weights are given by the input-output rela-
tionships found in the input-output tables. Moreover, in order to account for the central-
ity of a given location, I compute market access measures that include all the upstream or

downstream firms within one kilometer of the location.
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Other supply conditions, in particular input prices, are also considered in the location
choice process. Obtaining said prices is a hard task as they are often private information.
However, given the fact that this paper uses small geographical areas (the grid cells) as
locations, it is safe to assume that input prices are constant within each cell. Therefore,
there is no need to measure them.

On the demand side, depending on the industry, firms might want to stay close to
the public. To measure that, I use the EPOI data to capture locations that attract people.
In particular, I consider access to parks and waterbodies, banks, hotels, tourist attractions
and postal services. Moreover, in order to further measure access to consumers, I consider
access to real estate housing using the 2013 Address Points files also from DMTI that
contain all the residential and commercial addresses for Canada.

This is translated into the following specification for the decision rule of a given firm

i from industry j that is deciding to locate in cell-grid / at time t:

dijir = B+ fror (#POL;) + franp (LANDy) + frousk (#Houses);)
+ fur (#Upjt) + foown (#Downjy) + €y (1)

where dijlt is one if the firm decides to locate in cell-grid I and zero otherwise, #POI};
are the number of points of interest (banks, hotels, tourist attractions or postal services)
in cell-grid I, LANDy; is the percentage of land of cell i that correspond to different land
uses (parks and waterbodies, commercial or industrial areas), ;#Houses;; is the number of
houses, #Upj); is the weighted sum of firms upstream, #Down;j; is the weighted sum of
firms downstream and ¢; is the error term. The function fx(X;) is a function that represent

the access to X in location 7, and is given by

fx (X) = BxX + Bma_xMA_X (2)

where MA_X; is a measure of centrality of a given location relative to X;. The measure is
computed as weighted sum of X of all cells within one kilometer of the origin cell where
the weights are given by the inverse of distance with an exponential decay and p = 1.
This decision rule is estimated following McFadden| (1973)’s conditional logit model
in which location choices reveal the preferences associated with the agent’s utility / profit
maximization problem. In practice, the application of this approach to any location choice
poses a problem related to the definition of the spatial choice set. Ideally, small areas
should be used, because factors usually identified as relevant for location decisions (such
as agglomeration economies, labor market conditions, or the cost of inputs) apply at the
local level and consequently cannot be adequately taken into account when the model
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considers large areas in the spatial choice set. However, the use of small areas poses a
difficulty for estimation, as the conditional logit model does not handle large choice sets
very well. Guimardes et al.| (2003) provides a solution to this problem by demonstrating
that, under the assumption that individual decisions are based exclusively in a vector of
choice-specific attribute variables common to all decision-makers, the coefficients of the
conditional logit model can be equivalently estimated using a Poisson regression, which
is what I use instead.

Figure 5: Distribution of Raw vs Propensity Score Probabilities: Industrial Neighbor-
hoods

Different industrial sectors might have different valuation for location attributes im-
plying different neighborhoods across sectors. To account for that, the decision rule is
estimated for all firms as well as for firms in the manufacturing, retail, service, and food
and lodging sectors. The estimation of the decision rule leads to a propensity score whose
distribution for all firms can be found in Figure This figure presents the comparison
between the raw probability and the propensity score associated to a given cell. The color
code of the figure is from blue (lower probability / propensity score) to red (higher prob-
ability / propensity score). The first thing to note is that both distributions share similar
patterns signaling that the propensity score is accurately approximating the conditional
expectation of finding a firm in a given grid-cell. The patterns show that the spatial distri-
bution of economic activity is highly skewed. In particular, there is a higher concentration
of economic activity in the downtown areas, along major streets and specially around the

Toronto Financial District. Moreover, it shows that moving away from the city quickly

Z’Even though interesting, the results for the coefficients of the propensity score are not the main objective
of this paper and hence are left in Table[A.3)in the Appendix.
28The distribution of the propensity scores for sectors can be found in Figure in the Appendix.
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decreases the probability of finding a firm keeping them relegated to only around ma-
jor streets. The main difference between the two spatial distributions is the sharpness.
The propensity score is more blurred than the raw probability and this is because the
propensity score is effectively smoothing out the probability as it considers market access
measures that account for the access within 1km from the grid-cell.

The algorithm is applied after the estimation of the propensity score. Following the
discussion in Sections 2| and |3} I use six thresholds and define them as a function of the
standard deviation of the propensity score. The thresholds are set at 4,2,1,0.5,0.1 and
0.01 standard deviations of the propensity score. Neighborhoods are defined as an area
that has been the result of the agglomeration process of the algorithm. This means that
a neighborhood is every area that is composed by at least two grid-cells. Table [1| shows
the characteristics of the resulting neighborhoods for the minimum threshold level (one
standard deviation) that leads to neighborhoods that account for at least 90% of the firms
in the whole sample

Table 1: Neighborhood Characteristics: Industrial Neighborhoods

Number of Firms in Number of Area Length Width Length/Width
Firms Neighbor- Neighbor- (sq km) (km) (km)
hoods hoods

All Firms 125,435 91.03 13,947 0.713 0.838 0.431 1.764
(20.945) (2.411) (1.003) (0.891)

Manufacturing 17,661 82.35 6,130 1.467 1.099 0.548 1.807
(29.642) (3.967) (1.726) (0.954)

Wholesale and Retail Trade 44,846 84.58 10,187 1.055 0.966 0.505 1.813
(24.591) (2.661) (1.255) (0.808)

Professional Services 47,464 76.62 7,085 0.996 0.867 0.467 1.62
(23.151) (3.155) (1.265) (2.978)

Entertainment, Accommodation and Food 15,464 79.91 5,079 1.818 0.964 0.526 1.695
(58.8) (3.499) (1.733) (1.018)

Note: Results correspond to running the algorithm for each group of firms with a threshold set to the minimum threshold that leads to neighborhoods accounting for 90%
of the firms in the whole sample. This threshold is one standard deviations in the propensity score. Firms in neighborhoods correspond to the percentage of firms that
belong to neighborhoods that have at least two cells. Length (and width) correspond to the longest (and shortest) side of the minimum bounding rectangle that contains
the neighborhood. Standard deviations are in parenthesis.

The main result from the exercise is that neighborhoods are different from each other
across industries@ There are three main statistics reported in the table. The first one is the
area in square kilometers that each neighborhood has. On average industries that have
less reach due to window shopping or less within city tradability, such as professional
services and retail, have smaller neighborhoods than industries that are more tradable

within a city, like manufacturing and entertainment services

29 All results are available in Table in the Appendix.

30 Another interesting result is that even though the propensity score specification includes interactions
across firms through input-ouput connections, these connections are not enough to capture the relation-
ships between them. This is clear because splitting by industries decreases the percentage of firms within
the industry that belong to a resulting neighborhoods, which means that the algorithm learns about inter-
actions across industries more than what input-output relationships capture.

31Even though there might be some specialization within industries, it is not captured in the current
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The second and third statistics provide information about the shape of the neighbor-
hoods by showing the average length (longest side of the minimum bounding rectangle
that contains a neighborhood) and width (the shortest side of the minimum bounding
rectangle that contains a neighborhood). An interesting result arises here. On average,
neighborhoods can be represented by a shape longer than it is wide, like a rectangle or an
ellipse. Further visual inspection shows that these neighborhoods tend to locate around
major streets. This is true for all industries, but more so for the manufacturing and trade
industries. Moreover, the table shows that the smaller area of professional services and
retail is given more by differences in length than in width, with neighborhoods that are

between 42% to 59% shorter than the manufacturing and entertainment services.

4.2 Residential Neighborhoods

The underlying location choice problem for firms is one of utility maximization. Under
utility maximization, the observed location is the one that maximize the expected utility
of the household relative to all other possible locations. This implies that the probabil-
ity that a household locates in a particular place depends on how characteristics of that
location affect the household utility relative to the characteristics of all other locations.
Therefore, the explanatory variables to be considered are those specific to a location that
are believed to have an impact on a household’s expected utility. In this application, the
variables I consider measure the location’s access to goods, services and amenities to-
gether with the average characteristics of a housing unit in that location. In the following
paragraphs, I describe the data I use to measure these variables and the methodology to
do so.

The main data comes with a wide range of transaction and property attributes: the
transaction date, the postal code, the asking and sold price, the type of property, the
number of floors, the number of rooms, bedrooms, kitchens, washrooms, family room:s,
tireplaces, the size of the lot, and parking space. The dataset contains 68,184 transactions
for 2013 in the GTA. To geolocate properties, I assign to each transaction the coordinates
of the centroid of the postal code at which the property is located@A snapshot of the data
can be found in Figure

To measure access to goods, services and amenities, I combine this data with the EPOI

data from the industrial application and calculate the same market access measures. To

specification as the data is only split by the macro industries listed above. Further division of the data into
more specific industries is possible if the number of observations increases. This could be accomplished by
introducing a time-component in the location choice.

32Postal codes in Canada are small and generally represent a block face in large urban areas, like the GTA.
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measure characteristics of the average housing unit in a given cell, I take the average
number of rooms, the total number of rooms and the average lot size from the transaction
data. Finally, each observation represents a transaction and hence it does not represent
the housing stock at a given period in time. For this reason, I also use the 2013 Address
Points files to obtain a measure of housing supply by calculating the number of residential
addresses in a given cell.

This is translated into the following specification for the decision rule of a given house-
hold i that is deciding to locate in cell-grid [ at time t:

diiy = B+ fror (#POIy) + franp (LANDy) + frouse (#Housesy;)
+ Brooms AvgRoomsyy + Baiireoms SumRoomsy + Bjo AvgLotSizey + €1, (3)

where d;;; is one if the household decides to locate in cell-grid I and zero otherwise,
#POI;; are the number of points of interest (banks, hotels, tourist attractions or postal
services) in cell-grid I, LANDy, is the percentage of land of cell I that correspond to dif-
ferent land uses (parks and waterbodies, commercial, government or industrial areas),
#Houses); is the number of houses, AvgRooms;; is the average number, SumRoomsy; is
the total number of rooms available for sale, AvgLotSizej; is the average lot size of the
location (zero in the case of condos), €;;; is the error term. As in the case of industrial
neighborhoods, the function fx(X;) is a function that represent the access to X in location
i, and is given by equation 2/

Figure 6: Distribution of Raw vs Propensity Score Probabilities: Residential Neighbor-
hoods

33The coefficients of the propensity score can be found in Table in the Appendix. The distribution of
the resulting score by property type can be found in Figure in the Appendix.
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Different households might have different valuation for location attributes implying
different neighborhoods across household types. Unfortunately, I cannot measure that
but I proxy it by separating the estimation by property types (condos or houses) and as-
suming that households that buys condos have different preferences than those that buy
houses. The estimation of the decision rule leads to a propensity score whose distribu-
tion for all household types can be found in Figure[] As with industrial neighborhoods,
this figure presents the comparison between the raw probability (left) and the propen-
sity score (right) associated to a given cell. The first thing to note is that both distri-
butions share similar patterns signaling that the propensity score is approximating the
conditional expectation of finding a property in a given grid-cell very well. Although
the raw probability is very low, it still present some concentration in certain parts of the
city, especially in downtown areas. Moreover, it shows that moving away from the city
quickly decreases the probability of finding a transaction keeping them relegated to only
around major streets. Replicating the case of industrial neighborhoods, the main differ-
ence between the two spatial distributions is their sharpness. The propensity score is
more blurred than the raw probability and this is because the propensity score is effec-
tively smoothing out the probability as it considers market access measures that account
for the access within 1km from the grid-cell.

The algorithm is applied after the estimation of the propensity scores. As in indus-
trial neighborhoods, I use six thresholds and define them as a function of the standard
deviation of the propensity score. The thresholds are set at 4,2,1,0.5,0.1 and 0.01 stan-
dard deviations of the propensity score. Table [2|shows the characteristics of the resulting
neighborhoods for the minimum threshold (“two” standard deviations) level that leads
to neighborhoods that account for at least 90% of the transactions in the whole sample.

Table 2: Neighborhood Characteristics: Residential Neighborhoods

Number of Transactions Number of Area Length Width Length/Width
Transactions  in Neighbor- Neighbor-
hoods hoods

All Transactions 68,184 89.57 6,921 0.685 0.528 0.284 1.633
(19.66) (2.572) (1.164) (1.081)

House Transactions 48,510 92.84 6,834 0.671 0.495 0.274 1.613
(19.535) (2.413) (1.119) (0.947)

Condo Transactions 19,674 77.73 5,146 1.442 1.062 0.497 2.049
(27.742) (3.694) (1.608) (1.845)

Note: Results correspond to running the algorithm for each type of transaction with a threshold set to “two” standard deviations in the propensity score. Transactions in
neighborhoods correspond to the percentage of transactions that belong to neighborhoods that have at least two cells. Length (and width) correspond to the longest (and
shortest) side of the minimum bounding rectangle that contains the neighborhood. Standard deviations are in parenthesis.

4.3 Neighborhood Similarity

One of the benefits of this algorithm is the ability to obtain neighborhoods that are pre-
sumably different across types of agents. In particular, in the applications describe above,
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the algorithm was run for different industries and different real estate property types. In
order to measure the degree of agreement between these neighborhoods, I compute the
adjusted Rand index (Hubert and Arabie, 1985), which is a measure of similarity between
two groups or classifications (boundaries of neighborhoods in this case) that is widely

used in machine learning. The unadjusted index is given by

RI — # of agreements
~ #agreements + #disagreements

where the number of agreements is given by number of grid-cell pairs that are as-
signed to the same (and different) neighborhoods in both boundaries, and the number
of disagreements is given by the number of pairs of grid-cells that are assigned to same
neighborhoods in one boundary but different neighborhoods in the other boundary. The
adjusted version of this index corrects by chance by ensuring to have a value close to 0.0
for random classification independently of the number of neighborhoods and exactly 1.0
when the classifications are identical?¥ As a result, the Rand index measures the ratio of
agreements between the two boundaries over the total number of grid-cell pairs, and its

values range between 0, dissimilarity, and 1, maximum similarity.

Table 3: Agreement Between Industrial Neighborhoods (ARI)
All Firms 3 4 5 7

All Firms 1.00

3 - Manufacturing 0.77 1.00

4 - Wholesale and Retail Trade 0.76 0.84 1.00

5 - Professional Services 0.76 0.80 0.81 1.00

7 - Entertainment, Accommodation and Food 0.37 0.36 0.35 0.34 1.00

Based on the findings of the previous subsections, I perform three exercises to assess
the degree of agreement between and across types of neighborhoods. Table [3|shows that,
even though there is a high degree of agreement between industrial neighborhoods is still
far from 1 showing. Moreover, it shows that the entertainment industries have neighbor-
hoods that are very different from the ones from other industries which signals that the

34The unadjusted rand index suffers from one drawback; it yields a high value for pairs of random par-
titions of a given set of examples. To understand this drawback, think about randomly grouping a number
of examples. When the number of partitions in each grouping, that is when the number of clusters, is in-
creased, more and more example pairs are going to be in agreement because they are more likely to be not
grouped together. This will result in a high RI value. Thus, RI is not able to take into consideration effects
of random groupings. To counter this drawback, an adjustment is made to the calculations by taking into
consideration grouping by chance. This is done by using a specialized distribution, the generalized hyper-
geometric distribution, for modeling the randomness. The resulting measure is known as the adjusted
Rand index (ARI).
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location choice process that these industries face is fundamentally different. Table [ repli-
cates the exercise for residential neighborhoods and shows a similar degree of agreement
between condo and house neighborhoods. Finally, Table 5| performs the exercise between
industrial and residential neighborhoods and shows Rand indices close to zero which
support the intuition that that industrial and residential neighborhoods are fundamen-
tally different.

Table 4: Agreement Between Residential Neighborhoods (ARI)

all houses condos
All Transactions | 1.00

Houses 0.83 1.00

Condos 0.79  0.79 1.00

Additional results come from analyzing how residential (relative to industrial) neigh-
borhoods change across thresholds. Table in the appendix, gathers all the results
for the exercise and shows that residential neighborhoods are less clear than industrial
neighborhoods and the differences between them less informative. This is shown by the
requirement that the threshold be higher (“two” in this case vs “one” in the industrial
neighborhoods) in order to account for 90% of the data. Moreover, this is further demon-
strated by the sensitivity of residential neighborhoods to changes in the threshold. This
can be attributed to the fact that the distribution of real estate sales (houses in particular)
is widely spread across the city which is consistent with the results from the previous sec-
tion signaling that in order for the algorithm to work properly we need a highly skewed
distribution of economic activity. In this case, splitting the data helps, as the distribution
of condo sales is more concentrated in certain locations of the city, which in fact delivers
condo neighborhoods that are more stable across thresholds.

Table 5: Agreement Between Industrial and Residential Neighborhoods (ARI)

All  Houses Condos
All Firms 0.084 0.085 0.082
3 - Manufacturing 0.083  0.083 0.081
4 - Wholesale and Retail Trade 0.081 0.081 0.080
5 - Professional Services 0.080  0.080 0.079
7 - Entertainment, Accommodation and Food | 0.047  0.046 0.045

This section has shown that different agents making location choices lead to different
economic neighborhoods across agents. These economic neighborhoods differ in size and

shape and are distributed differently across the space. These differences are a signal of
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the potential issues that a misalignment between economic and legal neighborhoods may
produce. The next section focuses on that by studying how the economic neighborhoods
are different from their legal counterpart and how their differences relate to the potential

misalignment issues.

5 Economic vs. Legal Neighborhoods

The misalignment between ‘legal” and ‘economic” neighborhood boundaries may pro-
duce three issues that the algorithm aims to avoid. First, legal neighborhoods may present
the modifiable areal unit problem as they are not the unit of analysis at which agents
make location choices but they are areas that are “arbitrary, modifiable, and subject to
the whims and fancies of whoever is doing, or did” them (Openshaw, 1983). Second, as-
sumptions of symmetric interactions within neighborhoods are common in research but
symmetric interactions are more-or-less likely to hold depending on the size of the neigh-
borhoods. And third, structural models that use Type 1 distributions to match the spatial
distribution of economic activity tend to assume uncorrelated shocks.

In this section, I study how ’legal’ neighborhoods differ from ‘economic’ neighbor-
hoods besides their descriptive statistics and through the lens of the issues mentioned
above. Addressing the first and second issue, I first study the size distribution of neigh-
borhoods by analyzing the extent to which neighborhoods can be described by Zipf’s
law. In geography, Zipf’s is an empirical law about the size distribution of spatial units.
If the law holds perfectly, then the size distribution can be approximated with a Pareto
distribution with shape parameter equal to one. If the shape parameter is equal to one
then the power law implies that, within a city, the largest neighborhood is roughly twice
the size of the second largest neighborhood, about three times the size of the third largest
neighborhood, and so on. If the shape parameter is greater than one, it indicates that the
size is more evenly distributed across neighborhoods than what the Zipf’s law predicts.

Since the seminal work of (Gabaix| (1999), an enormous amount work on the size dis-
tribution of cities has been published (Nitsch, [2005). However, the evidence reported by
this literature is inconclusive and debatable. The difference among results seems to be
attributable to the city definition employed suggesting that the analysis of size ranking
distribution may be affected by a modifiable areal unit problem (MAUP). But, as noted
by Duranton and Pugal (2014), even though it’s empirical validity is debatable it is still
useful to study the differences in size distribution through the lens of Zipf’s law because
both the regularities and the observed empirical deviations from it can be used to guide

the modeling of economic processes underlying neighborhood size distributions.
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To address the third issue, I then compute the Global Moran! (1950)’s I index of spatial
correlation to test the intuition that the algorithm delineates neighborhoods that have
zero spatial correlation between the location choices between a neighborhood and their
immediate neighbors. This index represents the correlation between a variable and its
surrounding values. A positive Moran’s I indicates that similar observations are closer to
each other, while a negative value indicates that dissimilar values are closer to each other,
and values around zero would indicate that there is no spatial correlation, and instead,
observed values are randomly distributed.

5.1 Neighborhood Size Distribution

Following Gabaix and Ibragimov|(2011), this subsection tests the Zipf’s law for neighbor-
hoods by estimating the relationship between the log of size and the log of size rank. For
each threshold and firm /household type I estimate:

log (Rank,- - %) = a + Blog (Size;) + €; 4)

where i is a neighborhood indicator. Size; can be two measures of the relative importance
of a neighborhood. The first measure is the number of agents choosing a given neigh-
borhood, this is translated to the number of firms for industrial neighborhoods and the
number of real estate transactions for residential neighborhoods. The second measure is
the resulting area of the neighborhood. Rank; computes the rank across neighborhoods
of Size;.

As mentioned before, if Zipf’s law holds then B = 1. A coefficient greater than 1
suggests that within a city the size is more evenly distributed across neighborhoods than
what the rank size rule predicts@ The results from estimating the coefficients of equa-
tion (@) for industrial and residential neighborhoods are reported on Tables (6) and (7)
respectively. Following the previous definition, neighborhoods are those areas that are
composed of at least two grid-cells cells (i.e. neighborhoods delivered by the algorithm).
Moreover, I further restrict the sample to those neighborhoods and postal codes that have
at least one firm (real estate transaction) for the case of industrial (residential) neighbor-
hoods. This means that the set of postal codes being used in industrial vs residential
neighborhoods might be different and hence leads to different results.

Results show that the area of industrial neighborhoods is more or less similarly dis-

SThe Bcoefﬁcient can also be interpreted as an indirect indicator of a neighborhood primacy, as a coeffi-
cient smaller than one suggests that one or a few large neighborhoods dominate the urban landscape of the
city (Rosen and Resnick, [1980).
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tributed to the area of postal codes. This is not the case when measuring size as the num-
ber of firms in an area. In that case, industrial neighborhoods are more evenly distributed
than postal codes. An explanation for this comes straight from the algorithm. The objec-
tive of the algorithm is to put very similar areas together. For example, if an area in the
middle of downtown with a high number of firms has a certain level of attractiveness, and
is adjacent to areas with similar attractiveness but less number firms, then the algorithm
will put them together whereas in the postal code scenario they would be separate. This
is what makes the number of firms more evenly distributed. This argument, however,
does no necessarily hold for the area of the neighborhoods, which is presumably why we

observe a more even distribution.

Table 6: Zipt’'s Law: Industrial Neighborhoods

Area Number of Firms

Neighborhoods Postal Neighborhoods Postal
Codes Codes

All Firms -0.736 -0.774 -0.722 -0.37
(0.001) (0.001) (0.001) (0.001)

Manufacturing -0.528 -0.711 -0.894 -0.362
(0.002) (0.002) (0.004) (0.002)

Wholesale and Retail Trade -0.639 -0.734 -0.771 -0.363
(0.001) (0.001) (0.002) (0.002)

Professional Services -1.561 -0.771 -0.822 -0.37
(0.006) (0.001) (0.001) (0.001)

Entertainment, Accommodation and Food -0.494 -0.694 -0.875 -0.338
(0.002) (0.002) (0.005) (0.002)

Note: Results correspond to running the algorithm for each group of firms with a threshold set to number of standard deviations in propensity
score that one standard deviations in the propensity score. The reported values correspond to the f coefficient that results from running the
following regression log(Rank(var)) = & + plog(var) + € where var is the area or the number of firms at the neighborhood or postal code level

and Rank(var) correspond to the rank of said variable across geographies. Standard errors are reported in parenthesis.

Residential neighborhoods do not only differ to industrial neighborhoods in terms of
shape and size, but also in how the size is spatially distributed. I find evidence that the
area of residential neighborhoods is less evenly distributed than postal codes, which is the
opposite to the case of industrial neighborhoods. Moreover, the distribution number of
transaction of residential neighborhoods is similarly distributed to the number of transac-

tions in postal codes, which is again the opposite to the case of industrial neighborhoods.

Table 7: Zipt’s Law: Residential Neighborhoods

Area Number of Transactions
Neighborhoods Postal Neighborhoods Postal
Codes Codes
All Transactions -0.441 -0.704 -0.380 -0.386
(0.002) (0.001) (0.002) (0.003)
House Transactions -0.409 -0.707 -0.373 -0.379
(0.003) (0.003) (0.002) (0.004)
Condos Transactions -0.366 -0.505 -0.319 -0.322
(0.004) (0.006) (0.004) (0.004)

Note: Results correspond to running the algorithm for each group of transactions with a threshold set to one standard deviations in the
propensity score. The reported values correspond to the § coefficient that results from running the following regression
log(Rank(var)) = & + plog(var) + € where var is the area or the number of transactions at the neighborhood or postal code level and Rank(var)

correspond to the rank of said variable across geographies. Standard errors are reported in parenthesis.
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5.2 Spatial Correlation

This subsection computes the Moran| (1950)’s I index of spatial correlation to test the in-
tuition that the algorithm delineates neighborhoods that present zero spatial correlation
between the location choices in a neighborhood and their immediate neighbors. More
specifically, the Global Moran’s I is a statistic of the degree of overall spatial autocorre-
lation in a spatial data set. It measures the covariance between neighborhoods and their
immediate neighbors (or the “spatial lag”), relative to a random distribution. The statistic
can be used as an index of the global degree of spatial clustering or dispersion in data,

and is given by:

B N Vi Ljm WijziZj
T vN N n .2
Yii—1 L Wij i=1%i

where z; is the deviation of the variable of interest with respect to the mean. w;; is the

matrix of weights that determines the neighbors j for each neighborhood i, and N is the
number of neighborhoods. The matrix of weights w;; is given by the inverse distance be-
tween i and all the neighborhoods. The numerator is a measure of covariance between
observations and their neighbors, summed across the whole data set, and the denomi-
nator is a measure of global variance, producing a normalized index that can be tested
against the null hypothesis that the variable of interest is randomly distributed across
neighborhoods@

Table 8: Spatial Autocorrelation (Moran’s I): Industrial Neighborhoods

Number of Firms Average Propensity Score

Neighborhoods Postal Neighborhoods Postal

Codes Codes

All Firms 0.002 0.273 0.071 0.731
(0.008) (0.001) (0.001) (0.001)

Manufacturing 0.002 0.208 0.085 0.862
(0.016) (0.001) (0.001) (0.001)

Wholesale and Retail Trade 0.002 0.25 0.186 0.615
(0.009) (0.001) (0.001) (0.001)

Professional Services 0.003 0.335 0.279 0.655
(0.004) (0.001) (0.001) (0.001)

Entertainment, Accommodation and Food 0.007 0.469 0.265 0.817
(0.009) (0.001) (0.001) (0.001)

Note: Results correspond to running the algorithm for each group of firms with a threshold set to one standard deviations in the propensity score. The
reported values correspond to the Moran’s I statistic after performing an spatial union of all the cells that belong to the neighborhood and defining

weights based on the inverse distance to the rest of neighborhoods. Pseudo p-value is reported in parenthesis.

%The index can be either positive (in the case that the standardized value Z; of the observation is positive
and the sum of its standardized neighbors Z; is positive, or in the case that Z; is negative and the sum of its
standardized neighbors Z; is negative—considered positive spatial association) or negative (in the case that
Z; is positive and the sum of its standardized neighbors is negative, or in the case that Z; is negative and the
sum of its standardized neighbors is positive—considered negative spatial association). The expected value
is — N_—fl under complete spatial randomness (no positive or negative spatial autocorrelation/association).
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Results support the intuition. Tables [§ and [9] shows the estimated indices and their
pseudo p-value for the number of firms (or transactions) in a neighborhood and the
propensity score. The algorithm is directly linked to the degree in which the propensity
score is spatially correlated. A very small threshold decreases the correlation as it would
create neighborhoods that are more dissimilar from each other. The opposite is also true if
a large threshold is chosen. Depending on the research question, while we might choose
one over the other, one thing is clear. Regardless of the threshold, the degree of spatial
correlation between neighborhoods decreases substantially relative to the case of postal
codes. Now, the results are even more promising when we take this exercise to the num-
ber of firms or transactions as this variable is not directly part of the algorithm process
but still shows a substantial decrease in spatial correlation even reaching to a precisely

estimated zero in the case of industrial neighborhoods.

Table 9: Spatial Autocorrelation (Moran’s I): Residential Neighborhoods

Number of Firms Average Propensity Score
Neighborhoods Postal Neighborhoods Postal
Codes Codes
All Transactions 0.000 0.46 0.074 0.571
(0.207) (0.001) (0.001) (0.001)
House Transactions -0.001 0.352 0.108 0.453
(0.001) (0.001) (0.001) (0.001)
Condo Transactions 0.000 0473 0.158 0.766
(0.352) (0.001) (0.001) (0.001)
Note: Results correspond to running the algorithm for each group of transactions with a threshold set to one standard deviations in the propensity score.

The reported values correspond to the Moran’s I statistic after performing an spatial union of all the cells that belong to the neighborhood and defining

weights based on the inverse distance to the rest of neighborhoods. Pseudo p-value is reported in parenthesis.

6 Conclusions

This paper is motivated by the potential biases that can come from the misalignment
between economic and legal neighborhoods. Starting from that motivation, this paper
proposes a revealed preference approach to delineate ‘economic” neighborhood bound-
aries. In particular, the paper develops a machine learning algorithm that uses historical
geocoded location choices of agents to identify neighborhoods as a collection of similar-
neighboring-choices.

Part of the misalignments arises from the fact that economic neighborhoods are not
necessarily constant across agents. This is in part why the algorithm is flexible enough
to be adapted to different economic agents making different location choices. The paper
addresses this by applying the algorithm to two different datasets and showing that in
fact economic neighborhoods are different from each other and do not look like postal
codes.

Finally, the paper goes back to the initial misalignment discussion and analyzes the
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differences between economic and legal neighborhoods from the perspective of the biases
that may arise when using one over the other. By analyzing the spatial size distribution
of neighborhoods, this paper shows that economic neighborhoods are in general equal
or more evenly distributed than their legal counterparts, meaning that studying things
like segregation or economic concentration using legal neighborhoods may lead to higher
estimates than what we observe in real life. Moreover, by analyzing the degree of spatial
correlation between neighborhoods, this paper shows that economic neighborhoods are
in fact more suitable for modern models of economic geography that typically assume
uncorrelated shocks, and that using legally defined areas violates that assumption.
Given the recent attention to neighborhoods in the economic literature, empirical re-
search in Urban Economics has to address the challenge of identifying the best geograph-
ical unit of analysis for measuring what constitutes a neighborhood. Such a quest in now
possible due to the increasing availability of highly detailed spatial data sources that are
at the choice level. However, the data is still scarce and this algorithm is not necessarily
feasible for all potential research questions. This leaves the space open for further re-
search in this area, so that we can minimize the misalignment bias and hence better guide
policy makers when making decisions that need to take into account the precise scope of

neighborhoods.
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Appendix

Figure A.1: Neighborhoods when the clustered case results in 50 neighborhoods

6.6017 std. deviations 6.6017 std. deviations
N=25 clusters N=50 clusters
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Figure A.2: Distribution of Raw vs Propensity Score Probabilities: Industrial Neighbor-
hoods

(a) Manufacturing

(d) Entertainment, Accomodation and Food Services




Figure A.4: Distribution of Raw vs Propensity Score Probabilities: Residential Neighbor-
hoods

(a) Condos

@
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Figure A.3: Distribution of Propensity Score At Neighborhood Level: Industrial Neigh-
borhoods

Average Score
(a) Manufacturing (b) Trade

(c) Services (d) Ent/Food/Lodge

Maximum Score
(e) Manufacturing (f) Trade

(g) Services (h) Ent/Food/Lodge
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Figure A.5: Distribution of Propensity Score At Neighborhood Level: Residential Neigh-
borhoods

Average Score
(a) Condos (b) Houses

Maximum Score
(c) Condos (d) Houses
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Table A.3: Industrial Propensity Score

n_firms NAICS_3 NAICS_4 NAICS_5 NAICS_ 7
area_Parks -0.17*** 0.02 -0.28*** -0.03** -0.26***
(0.01) (0.02) (0.01) (0.01) (0.03)
area_Residential 0.20%**  -0.04*** 0.22%%* -0.06*** 0.02
(0.01) (0.01) (0.01) (0.01) (0.02)
area_Industrial 0.18*** 0.04*** 0.11%* -0.00 0.06***
(0.00) (0.01) (0.01) (0.01) (0.01)
area_Commercial -0.08*** 0,17+ -0.00 -0.01** 0.11%**
(0.00) (0.00) (0.00) (0.00) (0.00)
area_Government -0.24%*  -0.16%** -0.26%** 0.08*** 0.10%**
(0.01) (0.01) (0.01) (0.00) (0.01)
poi_POST 0.05%** 0.09%** 0.09%** 0.02%** -0.16***
(0.00) (0.00) (0.00) (0.00) (0.01)
poi_TOUR -0.02%*  -0.10%** -0.05%** -0.02%** 0.15%**
(0.00) (0.00) (0.00) (0.00) (0.00)
poi_BANK 0.08*** 0.06%** 0.04*** 0.09*** 0.10%**
(0.00) (0.00) (0.00) (0.00) (0.00)
poi_RESTA 0.01***  -0.06%** -0.00 0.01*** 0.04***
(0.00) (0.01) (0.00) (0.00) (0.00)
poi_HOTEL -0.11*  -0.01** -0.06%** -0.10%** -0.11%*
(0.00) (0.00) (0.00) (0.00) (0.01)
MA_1km_area_Parks -0.26%**  -0.06%** -0.03** -0.07*** -0.10***
(0.01) (0.02) (0.01) (0.01) (0.03)
MA_1km_area_Open -0.23**  -0.36%** -0.27%%* -0.03*** -0.09***
(0.01) (0.01) (0.01) (0.01) (0.01)
MA_1km_area_Residential 0.38%** 0.19%** 0.12%%* -0.07*** -0.05***
(0.01) (0.01) (0.01) (0.01) (0.02)
MA_1km_area_Industrial 0.23%** 0.43%** 0.32%%* 0.06*** -0.13***
(0.00) (0.01) (0.01) (0.01) (0.01)
MA_1km_area_Commercial | -0.10***  -0.09*** 0.23%%* 0.03*** 0.11%**
(0.00) (0.01) (0.00) (0.01) (0.00)
MA_1km_area_Government | -0.02*** -0.01 -0.05*** -0.09*** 0.13***
(0.00) (0.01) (0.01) (0.01) (0.01)
MA_1km_poi_POST 0.10***  -0.07*** -0.12%%* 0.07*** -0.04***
(0.00) (0.01) (0.01) (0.01) (0.01)
MA_1km_poi_TOUR 0.09*** 0.08*** 0.46%** -0.02* -0.08***
(0.00) (0.02) (0.01) (0.01) (0.02)
MA_1km_poi_BANK -0.12%** -0.01 -0.35%** -0.09%** 0.01
(0.00) (0.02) (0.01) (0.01) (0.01)
MA_1km_poi_RESTA 0.06***  -0.26%** -0.18*** 0.09*** 0.06***
(0.00) (0.01) (0.00) (0.00) (0.00)
MA_1km_poi_HOTEL -0.04%*  0.20%** -0.09%** 0.06*** -0.12%**
(0.00) (0.01) (0.01) (0.00) (0.01)
stock_houses_DMTI -0.06™**  0.04*** -0.02%%* 0.05%** 0.05%**
(0.00) (0.00) (0.00) (0.00) (0.00)
Down 0.01 -0.02 -0.02 0.13
(0.12) (0.09) (0.10) (0.09)
Up -0.01 0.26%** 0.04 0.12
(0.14) (0.09) (0.10) (0.10)
const -2.46M 4340 -3.52%** -2.96%%* -4.24%%*
(0.00) (0.01) (0.01) (0.01) (0.01)
Observations 740,286 740,286 740,286 740,286 740,286
Pseudo R-squared 0.33 0.28 0.31 0.25 0.24
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Table A.4: Residential Propensity Score

n_sales_ MLS n_houses_MLS n_condos_MLS

area_Parks
area_Open
area_Residential
area_Industrial
area_Commercial
area_Government
poi_POST
poi_TOUR
poi_BANK
poi_RESTA
poi_HOTEL
MA_1km_area_Parks

MA_1km_area_Open

MA_1km_area_Residential
MA_1km_area_Industrial
MA_1km_area_Commercial

MA_1km_area_Government

MA_1km_poi_POST
MA_1km_poi_TOUR
MA_1km_poi_BANK
MA_1km_poi_RESTA
MA_1km_poi_HOTEL
mean_rooms_MLS
sum_rooms_MLS
avg_lotsize_MLS
stock_houses_DMTI
const

Observations
Pseudo R-squared

0217
(0.04)
-0.28%
(0.05)
-0.18%%
(0.03)
0.12%%
(0.02)
-0.04%%
(0.01)
-0.08**
(0.01)
0.01
(0.01)
-0.074%
(0.01)
-0.04%%*
(0.01)
_0'01 L2
(0.00)
0.00
(0.00)
0' 78**5{-
(0.03)
0.93***
(0.04)
0. 7 k%
(0.02)
0.29***
(0.01)
0.08**
(0.00)
0.17+*
(0.01)
-0.07%%
(0.01)
-0.05%*
(0.01)
0.10%*
(0.01)
0.05%*
(0.00)
0.02%+
(0.00)
0.40%*
(0.00)
0074+
(0.00)
_0' 1 5=(~>(—=(~
(0.02)
0,02%)(—5{-
(0.00)
_2'92***
(0.01)

740286
0.37

0.01
(0.03)
-0.01
(0.05)

740286
0.34

0,945
(0.07)
104
(0.09)
-0.84%%
(0.06)
-0.59%+
(0.04)
-0.18%*
(0.01)
-0.28%*

(0.00)
98.21%+
(1.13)
-0.00
(0.00)
_5 .23***
(0.02)

740286
0.49
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