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Abstract

How critical is spatial concentration for the success of startup firms? This paper uses
data on the universe of firms in large Canadian cities to study this question at the level of
city blocks and their surrounding neighborhoods. To account for sorting within blocks,
I use a newly developed clustering algorithm to construct neighborhoods relevant for
each industry within which sorting across blocks is conditionally random. To account
for sorting across neighborhoods, I develop a model of neighborhood selection, where en-
trepreneurs choose neighborhoods based on expected startup outcomes and preferences
for location. Results show that spillovers of block average same-industry employment
and revenue are hyper-local and mostly fade away after 75 meters. These spillovers have
economically significant effects on startup end-of-year revenue, employment, and sur-
vival rates. For a sense of magnitude, going from the 10th to the 90th industry-specific
percentile of incumbent average revenue increases the median startup revenue by 8.2%.
These effects are heterogeneous across industries, with employment-intensive industries
benefiting relatively more from larger while knowledge-intensive industries benefiting
relatively more from better incumbent firms.
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1 Introduction

This paper is about entrepreneurs, their startups and the spatial scale of productivity spillovers.1

A substantial amount of evidence for regions and cities, shows that firm and worker pro-

ductivity are increasing in proximity to higher concentrations of economic activity.2 Such

concentrations occur at many spatial scales, from the city block level up to the regional level.

In this paper, I characterized the magnitudes and composition of returns to such proximity at

city block and neighborhood level spatial scales. In fact, like Madison Avenue for advertising

in New York, Savile Row for tailoring in London, or Bay Street for finance in Toronto, many

industries are localized into particular neighborhoods of large cities. In this paper, I estimate

the benefits of such localization of incumbent firms to new startup firms.

Productivity spillovers can operate at many different spatial scales. Knowledge flows and

labor pooling effects decay rapidly with distance, suggesting that spillovers operating a lower

geographical scales might be part of the reasons behind high hyper-local economic concen-

tration (Faggio, Silva, & Strange, 2017; Fujita, Krugman, & Venables, 2001; Rosenthal &

Strange, 2001, 2003). These patterns are consistent with the notion that geographic concen-

tration may facilitate the exchange of ideas, promote creativity, and reduce entrepreneurial

risk, forces that stimulate the emergence and success of new firms (Alcácer & Chung, 2014;

Chatterji, 2009; Chatterji, Glaeser, & Kerr, 2014; Glaeser, Kerr, & Kerr, 2015; Henderson,

Kuncoro, & Turner, 1995). The natural implication is a relationship between productivity

spillovers that arise with proximity and new firms’ success that has motivated countless pub-

lic and private initiatives that encourage the spatial concentration of new firms (Nathan &

Overman, 2013; Porter, 1998). However, there is little causal evidence about the nature of

productivity spillovers to new firms, including how they differ by spatial scale.

This paper provides the first causal answer to this question using data on the universe of

incorporated firms and their workers in the four largest Canadian cities from 2001 to 2017.

While accounting for sorting across industry-specific locations within a city, I find strong

evidence of positive productivity spillovers from incumbent firms in the same industry and

located in the same block prior the startup operation.3 I separate these results into scale
1It is important to note that along this paper, I refer to entrepreneurs as owners of new firms. This is different
from the notion of self-employment that has been also used to characterize entrepreneurs but that omits an
important aspect in entrepreneurship, which is making big investments with the hope to make big returns.

2A small sample of papers in this broad topic is given by, Arzaghi and Henderson (2008), Combes et al.
(2012), Greenstone, Hornbeck, and Moretti (2010), and Rosenthal and Strange (2004).

3In terms of identification, I will discuss how estimates in this setting are less likely to be affected by a
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effects represented by average size of a company (in number of employees) relative to quality

effects represented by average revenue of a company. For startup end-of-year revenue, baseline

estimates show an elasticity to average incumbent firms revenue of about 0.02 and to average

incumbent firms employment of about 0.12. For startup end-of-year employment instead,

baseline estimates show an elasticity to average incumbent firms revenue of about -0.03 and to

average incumbent firms employment of about 0.22. For a sense of magnitude, these estimates

indicate that going from the 10th to the 90th industry-specific percentile of incumbent firms

average revenue increases the median startup revenue by 8.2% and decreases median startup

employment by 8.6%. In contrast, going from the 10th to the 90th industry-specific percentile

of incumbent firms average employment increases the median startup revenue by 78% and

increases median startup employment by 121%.

Consistent with the idea that proximity matters, results show that hyper-proximity max-

imizes productivity gains for new firms. Compared to estimates in the literature at higher

spatial scales, these estimates are relatively large and showcase how important is the geogra-

phy used to estimate these effects and is believe that there is a modifiable areal unit problem

in estimating at larger geographies. This is in part because spillovers operate within blocks,

and their effect quickly fades as we move away from the source of exposure. Once including

exposure to incumbents one (within 150 meters), two (within 225 meters), or three blocks

(within 300 meters) away, the elasticity estimates for exposure within the same block barely

change. Moreover, the estimates for the elasticity of the neighboring blocks quickly decay

towards zero from one block away in the case of incumbents average revenue and from two

blocks away in the case of incumbents average employment.

Different industries are likely to generate different levels and types of productivity spillovers.

This is a matter on the mechanisms driving them and how they are operate differently across

industries and are likely to affect new firms differently across industries. Differences in results

between them showcase that these mechanisms are important and give support, although not

causal, to some of these views. In practice, I perform two sets of exercises. First, in the spirit

of Faggio, Silva, and Strange (2017), I allow the elasticity to employment and revenue to

differ across groups of industries while controlling for differences in market conditions that

may arise across them. Second, as in Ellison, Glaeser, and Kerr (2010) I use cross-industry

reflection problem and that the main identification problem in this setting is location sorting. However, as a
precaution I use the characteristics of incumbents one year before. Results are similar in both specifications.
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connectivity weights to study the importance of the mechanisms underlying these different

theories of agglomeration.

Overall, both exercises present a similar picture. Allowing the elasticities to differ across

industries shows that employment-intensive industries (such as retail, trade, and manufac-

turing) benefit relatively more from larger incumbent firms. In contrast, knowledge-intensive

industries (such as professional, information, and financial services) benefit relatively more

from higher-quality incumbent firms. Results from connectivity weights support the previous

results showing that new firms tend to benefit largely from spillovers from more workers in

industries with employees performing similar tasks than the startup or higher quality firms

in supplier or consumer industries.

Empirically, the main identification challenge in this setting is endogenous location sort-

ing. Firm outcomes are not observed for all locations, but only for the single location in which

the startups chooses to start operations. Moreover, as these are new firms, I do not observe

their characteristics before choosing a location, which means there can be unobservables also

affecting the location choice. In order to overcome this problem, the literature has mainly

adopted two approaches depending on the question and data at hand. The first assumes

unobservables are constant within central Manhattan, Arzaghi and Henderson (2008), build-

ings Liu, Rosenthal, and Strange (2018) and commuting zones Roche (2020); or identifying

proper location counterfactuals like Greenstone, Hornbeck, and Moretti (2010), Heblich et al.

(2019), and Qian and Tan (2021).

I combine both approaches by introducing the distinction between neighborhoods and

blocks. Information frictions about the stock of businesses and real estate vacancies intro-

duce uncertainty about the exact industrial characteristic of most blocks the startup may

operate. This implies that new firms make location choices based on the expectations about

block characteristics. Using rich administrative data on the universe of firms and workers

in Canada and additional information about access to amenities, I use machine learnings

clustering methods to define neighborhoods in such a way that expectations about all block

characteristics within them are statistically identical.

With this distinction I account for location sorting in two steps: across blocks within

neighborhoods and across neighborhoods. To account for sorting across blocks within neigh-

borhoods, I construct neighborhoods relevant for each industry within which sorting across

blocks is conditionally random. The remaining variation across blocks within neighborhoods
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in a given year identifies the causal effect of local block characteristics in new firms out-

comes. To do this, I use a clustering algorithm developed in a companion paper that shows

that neighborhoods are not alike across industries and differ remarkably in size and shape

from their administratively defined counterparts (Campusano, 2021). In particular, neigh-

borhoods tend to have an elliptical shape and center around and include both sides of major

streets. The algorithm builds upon the idea of propensity score stratification with multiple

treatments and incorporates the spatial aspect that characterizes neighborhoods.4 Effec-

tively, I use historical geocoded firm location choices to estimate a propensity score model

using an exhaustive array of location characteristics including industrial composition, land

use, amenities and demographic composition. I then group adjacent locations so that result-

ing location clusters neighborhoods are chosen to minimize the variance of the propensity

score within each cluster.

Differences across neighborhoods within and across industries highlight how the same

distribution of economic activity affects different industries across a city. The use of neigh-

borhood fixed effects controls for fixed unobserved differences within the boundaries of these

newly defined geographies, controlling for sorting into blocks within neighborhoods. How-

ever, the interpretation of spillover elasticities in this context is very local as it is using

within neighborhoods variation for identification. Using a model to account for sorting across

neighborhoods allows me to interpret the elasticities in a more general way, as now they also

account for sorting into neighborhoods within a city.

To account for sorting between neighborhoods, I develop a Roy (1951) model of startup

neighborhood choices. Identification requires an exclusion restriction that influences en-

trepreneurs’ startup location choices without affecting firm revenue, employment or duration.

This poses a challenge for the case of firms as it means assuming that their location decision

are not solely made based on their bottom line. However, this is not necessarily the case

for startups in this setting as they are controlled by individuals who are most likely to con-

sider their idiosyncratic preferences for location when making location choices for their firm

(M. Dahl & Sorenson, 2012; Figueiredo, Guimarães, & Woodward, 2002; Kulchina, 2016).5

Therefore, in my framework sorting occurs as a consequence of entrepreneur idiosyncratic
4A similar approach has been applied by Heblich et al. (2019) and Qian and Tan (2021) for finding suitable
sites for new plants. The comparison is not spatial because suitable sites might not be necessarily located
next (or even close) to each other. This algorithm extends their approach as it also allows for comparisons
across neighborhoods by including their aggregated propensity scores at the neighborhood level.

5In fact, a majority of startups in my sample are founded in the place of residence of one of the founders.
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preferences.

To estimate this model, I use control function methods developed by G. Dahl (2002)

and Lee (1983). In particular, controlling for a nonparametric function of location choice

probabilities interacted with neighborhood fixed effects accounts for non-random sorting into

neighborhoods.6 However, estimating the choice probabilities in this setting is challeng-

ing. The identification strategy across neighborhoods requires having choice probabilities at

the entrepreneur-neighborhood level. All of this implies that I require probabilities at the

entrepreneur-neighborhood-year level.

Using standard methods to estimates the choice probabilities is infeasible in a setting

with that many alternatives. To resolve this issue, I use Kingma and Ba (2017) Adam’s

algorithm to estimate a neural network in which each entrepreneur has a unique node in

the network. Each node provides information about the relationship between features and

choices and informs the rest of the network through forward and backward loops. Outputs of

each node are propagated (and back-propagated) through the network, exploiting the ability

of early layers to learn representations that can be utilized by later layers in the network.

None of this would have been possible without the Canadian administrative tax data. Like

many other matched data sets, this data set includes detailed balance sheet information for

corporations and income tax information for workers. However, this data has three additional

features that are crucial for this analysis. For every firm and individual, I know its location

at the block-face level. Having such detailed information is crucial as it facilitates not only

the characterization of the industrial environment at fine geographies, but it also allows

me to construct industry-specific relevant neighborhoods, which is crucial for identification.

For every firm I also know every owner (corporation or individual) with more than 10%

of the shares of a corporation, and for every firm that I know if a large proportion of its

employment used to belong to a firm that is not in the data anymore. I use this information

for two important reasons. First, I identify true new firms from other type of firms that

appear to be new in the data but they are not, such as new branches/subsidiaries or merge

and acquisitions. Second, it is crucial for identification of the model that corrects for sorting

across neighborhoods, as it allows me to include owners characteristics.

This paper mainly contributes to the intersection of two literatures: the literature in
6This polynomial serves as a multidimensional analog of the inverse Mills ratio in the classic Heckman (1979)
model.
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urban economics that studies the effects and incidence of spatial treatments on firms, and

the literature in entrepreneurship that seeks to understand how the local environment affects

new firms success. Besides the uniqueness of this data for this context, the main contribu-

tion is done by recognizing the identification challenges that this type of question poses and

incorporating tools from the literature of treatment effects and computer science to address

them. Models of self-selection like the one used in this paper have long been used to un-

derstand individual treatment choices and its effect over their own outcomes. Recognizing

that startups are owned by individuals who not only consider their firms but also their own

preferences, and having data about that, makes using this type of model possible. More-

over, recognizing that neighborhoods are collections of similar micro-locations justifies use

of a propensity score method that applies machine learning clustering algorithms. Finally,

treating neighborhood choice as a classification problem facilitates the use of neural networks

to estimate probabilities that are otherwise impossible to estimate with current methods.7

The rest of the paper is organized as follows: Section 2 describes the data, sample and

measurement choices, Section 3 discusses the main identification challenge and introduces the

distinction between neighborhoods and blocks. Section 4 provides the main results for block

level spillovers within neighborhoods. Section 5 describes the neighborhood choice model, the

empirical methodology to control for sorting across neighborhoods, and provides the main

results for block level spillovers across neighborhoods, and Section 6 concludes.

2 Data

The primary data source is the 2019 vintage of the Canadian Employer-Employee Dynamics

Database (CEEDD) produced by Statistics Canada. The CEEDD links records of employ-

ment (T4 Statement of Remuneration Paid) to individuals (T1 Individual Income Tax and

Benefit Returns) and corporations (T2 Corporation Income Tax Returns) for the universe of

workers, firms and owners in Canada. The T4 files contain information on individual-firm

specific income and taxes paid. The T1 files contain information on individual characteristics,

family composition and income. The T2 files contain information on firm revenue, expenses,

and assets. Additional information on payroll and employment is derived from the linked T2
7This is related to the observation made by Mullainathan and Spiess (2017) and Athey and Imbens (2019)
that machine learning not only provides new tools, but also solves different problems than current empirical
methods.
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and T4 records.

I keep all firm-years in the Calgary, Montreal, Toronto and Vancouver CMAs with some

evidence that the firm is operating.8 I focus on using information about sales of goods

and services (revenue), employment, and payroll as these are required reporting lines in

the corporate tax filings. I drop firms that cycle back and forth between postal codes,

with missing location information, or with no 4-digit industry information. I identify a

firm’s founding and closing years as the first and last years it has positive reported revenue,

employment and/or payroll. Multi-locations firms only report one location per firm, which

I take to be their headquarters.9 I new drop multi-location firms, and I keep all incumbent

firms as they are likely to produce important spillovers for new firms.10 I drop firms in NAICS

s,2, 6 and 9 as their location choices are generally constrained by geographical features (in

the case of Agriculture and Mining) and politically defined boundaries (in the case of Health,

Education and Public Administration).

The Canadian data has two crucial features that differentiates it from other sources that

contain a similar employer-employee match structure. For every firm I know its almost-

complete ownership structure, and for every firm and individual I know its location at the

block-face level. Individuals and firms locations are obtained as Canadians need to report

their address of residence (in the case of individuals), and their address of operation and

legal activities (in the case of corporations). The ownership structure is obtained as Canadian

corporations must declare every corporation or individual that owns more than 10% of shares

(T2 Schedule 50).11

Even though firms and individuals report full addresses, only six-digit postal codes are

released. However, Canadian postal codes in major cities are very small as they typically

cover a single side of a city block (a block-face), a single building or even a portion of a
8These cities correspond to the largest 4 Canadian cities. Other major CMAs were left out mainly because
of the size of their postal codes (Edmonton) or city specific particularities. For example, Ottawa-Gatineau
is a mainly dominated by government establishments and workers.

9This implies that big corporations with many establishments will produce a large concentration of labor and
revenues in their headquarter locations.

10In this case we can think of total employment or total revenues as proxies of the importance of the firm
more than the level in a given location.

11The forms contain much more information that what it’s used in this paper. For reference about what is
available in them please visit:
T1: ww.canada.ca/en/revenue-agency/services/forms-publications/tax-packages-years/general-income-tax-benefit-package.html
T4: www.canada.ca/en/revenue-agency/services/forms-publications/forms/t4.html
T2: www.canada.ca/en/revenue-agency/services/forms-publications/forms/t2.html
T2SCH50: www.canada.ca/en/revenue-agency/services/forms-publications/forms/t2sch50.html
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large building. This means that using the coordinates of the centroid of each postal code

provides a precise estimate of the location of firms and individuals in major cities. Having

such detailed information is crucial as it allows not only the identification of firm neighbors

and their characteristics but also the use the spatial structure of the data for identification

purposes. This is done by constructing local counterfactual locations for firms in different

industries, which introduces the distinction between neighborhoods from blocks that will be

used throughout the rest of the paper (I defer this discussion to the next section).

The ownership structure provides the identifiers of firms and individuals than owns more

than 10% of a firm shares in a given year. Linking these identifiers back to T1, T2 and T4

files allows me to obtain among other things owners characteristics (both individuals and

firms), and their job and location history. Moreover, it allows me to separate new firms

mainly created by individuals or a group of individuals from new firms mainly created by

other firms. This distinction is important as this paper focuses on the former group of firms

that are more related to the model of entrepreneurship presented below.

2.1 Firm Classification

This paper focuses on how nearby incumbent firms affects new firms. However, separately

identifying them is challenging (Decker et al., 2014; Haltiwanger, Jarmin, & Miranda, 2012;

Schoar, 2010). Most administrative tax data do not have a specific flag for “new firms”, which

means that they can only be isolated by new entries in the dataset in a given year. However,

as firms in these data are defined based on tax reporting units; mergers and acquisitions might

appear in the dataset as a new entry while in fact an incumbent firm is simply changing tax

reporting units. For example, if a large firm acquires a small firm, the small firm seems to

have died, and the consolidated firm might appear in the data with its own new identifier.

In reality, the acquisition resulted in neither a firm birth nor a death. The employees of the

large firm still work for the same large firm, and most employees of the small firm work for

the same establishments, and hence for the new larger firm but under a new ownership.

To deal with this challenge I use a series of links between firms developed by the Longitu-

dinal Employment Analysis Program at Statistics Canada (J. R. Baldwin, Landry, & Leung,

2016; Dixon & Rollin, 2012). These links identify groups of firms that open or close one

year apart and are potentially related but have different tax identifiers. In particular, a pair

of firms is flagged as connected if they share a substantial portion of employees, belong to
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the same industrial classification and share similar firm name and addresses.12 The result is

observation of many different types of linkages between firms, depending on the complexity

of the restructuration the firms are undertaking. The key if the ability to separately observe

incumbents from true entrants.

After identifying truly new firms, the next challenge is to separate those new firms that

are created from existing firms from those started by individuals with little-to-no business

ownership experience. The second group are more related to the notion of entrepreneurship

examined here.13 These firms are called de novo firms in the management literature. It is

important to note that even though these firms lack of a parent company, they might have

corporate partners. Moreover, these type of firms also include spin-outs which are new firms

started by employees from incumbent firms (Franco & Filson, 2006).

Using the ownership structure of each firm, I to identify both types of new firms. The

database reports every owner with at least 10% of common or preferred shares. I use this

structure to classify new firms into groups: non-institutional and institutional firms. Insti-

tutional firms are those that either have a parent company that owns a majority stake of

common shares or have their ownership diluted in many owners that own less than 10% of

common shares, which would be the case for most publicly owned firms. Non-institutional

firms are the complement. Firms owned by one or few individuals that have a majority stake

in the company’s common shares. Within these companies, I define the controller as the

owner that owns the majority of the company, the owner that owns the majority within the

family that owns the majority of the company and/or the owner that owns the maximum

share of the company and also works for the company (has a T4 associated with the com-

pany). Finally, I flag the existence of preferred shares as well as a minority corporate partner

as a signal of having investors supporting the company.

Firm characterization

Altogether, there are three types of firms; startups, institutional entrants and incumbents.

Table 1 presents summary statistics for single-establishment firms operating in at least one

year between 2001 to 2017 in Calgary, Montreal, Toronto, and Vancouver. Overall there are

1,347,920 firms and 8,439,646 firm-years. Out of all these firms, 565,970 started operations
12See J. Baldwin, Dupuy, and Penner (1992) for a description of the construction of the database.
13The first group of firms are called de alio firms in the management literature or spin-off firms in the finance

literature. I interpret both concepts to be very similar (Agarwal & Moeen, 2016) .
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from 2002, 317,606 of them were startups, and 284,364 were institutional entrants. Each

column show statistics for incumbent firms, startups, and institutional entrants. The most

important takeaway of this table is that startups and institutional entrants and nothing alike.

The typical institutional entrant has end of year revenue 10 times higher than the typical

startup. Moreover, it has employment that is almost 5 times higher than the typical startup.

These startups are sufficiently small that entering to a given block is unlikely to influence

incumbents and local environment.

[Table 1 about here.]

2.2 Location characteristics

In large cities, Canadian postal codes denotes a single side of a city block, a single large

building or a portion of a very large one, or a business that receives large volumes of mail on

a regular basis. Moreover, postal codes tend to change over time in size and form to adjust to

the needs of mailing operations. For these reasons using postal codes to characterize locations

may lead to measurement error. To overcome this issue, I assign postal codes to hexagons

of 75 meter sides. Therefore, the smallest geographical unit in this paper is given by blocks,

which from now onwards are equivalent to postal codes or many postal codes whose centroid

is located inside the same hexagon. This means that location characteristics are defined at

the hexagon-cell level. Figure (1) shows how hexagons are assigned and the rings around

them. I will use these rings to study spatial decay in the estimation section.

[Figure 1 about here.]

[Table 2 about here.]

Table (2) report statistics about firm locations. As in Table (1), each column reports means of

block-level characteristics for the three types of firms. The first row indicates that a very large

proportion of firms operates in the place of residence of the main controller.14 Moreover, it

shows that there is also a high proportion of new firms that move within five years of starting

operations. This is consistent with a difficult decision, which I will use later for identification
14In this case of startups this is given by one of the founders. However, in the case of Inst. Entrants it is

given by the place of operations of the parent company, and in the case of incumbents is given by either
the residence of individual owners or place of operations of the parent company.
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purposes. Finally, this table also shows that startups start operations in places with less

concentration of economic activity, with firms with lower revenue and employment relative

to the other types of firms, but at the same time in places with high dynamism and new

firms.

From now on, I will focus on the effect of incumbent firms on startups. Unless stated

otherwise, I do not consider institutional entrants in any of the following analysis. The

next section will introduce the main identification problem and how I address it using a

combination of machine learning methods and economic theory.

3 Economic Neighborhoods

As discussed in the Introduction, a key element in the research design is the construction

of neighborhoods. In contrast to typical administrative neighborhoods, these neighborhoods

are constructed taking into account firms objectives and the way they differ across industries.

Consider all new firms who have already made their first location decisions and begun op-

erating. The population end-of-first-year outcome function y
(i,j)
lt for new-firm i of industry j

that began operations at time t in location l is given by:

y
(i,j)
lt = x

(i,j)
t β +X

(j)
lt θ + λ

(j)
t + ϵ

(i,j)
lt . (1)

Firm i’s end of year outcome y
(i,j)
lt depends on its own observed characteristics x

(i,j)
t , an

aggregation of characteristics of incumbent firms of industry j in location l at time t, X(j)
lt ,

industry and time specific fixed effects, λ(j)
t , and a transitory shock ϵ

(i,j)
lt . This specification

implies that firm’s outcome y
(i,j)
lt may be influenced, not only by its own characteristics, but

also by the characteristics of incumbent firms who interact with it. The important point here

is that firm interactions arise via spatial proximity.

These interactions produce spillovers across firms that are captured by θ. The primary threat

to identification is that firm’s outcomes are not observed for all locations, but only for the

single location in which the firm chooses to operate. This means that, in the self-selected

sample for location l, the error term ϵ
(i,j)
lt does not necessarily have zero mean conditional

on the independent variables, and ordinary least squares regression potentially yields biased

estimates of β, θ and λ
(j)
t . The ideal experiment would be to randomly assign twin firms to
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different locations and then compare firm outcomes. As an experiment like this is impossible,

the literature has adopted two different approaches depending on the question and data at

hand. The first is to assume unobservables are constant within a certain broad geographic

area as in Arzaghi and Henderson (2008), Liu, Rosenthal, and Strange (2017), and Roche

(2020) for Manhattan, buildings and commuting zones respectively. The second is to use

difference in difference strategies as in Greenstone, Hornbeck, and Moretti (2010), Heblich

et al. (2019), and Qian and Tan (2021).

I built on both approaches. Assuming location unobservables are constant within a certain

broad geographic area facilitates the use of broad area-time fixed effects to identify block level

spillovers. The identifying variation in this case comes from different outcomes of all new firms

that start operations the same year in the broad area but in different blocks within that area.

If location unobservables propagate in space, then the validity of this assumption decreases

as the size of these areas increases, as it is more likely that blocks unobservables differ within

broad areas. The challenge is to identify areas that are large enough to have block-level

variation in startup outcomes and small enough such that block location is conditionally

random.

The key to my approach is the distinction between neighborhoods and blocks.15 Informational

frictions about the current stock of business sites and vacancies introduce uncertainty about

the exact industrial characteristic of a block. This implies that new firms make location

choices based on expectations at the block level. Those expectations propagate spatially

creating neighborhoods composed by adjacent blocks that are otherwise equal in the eyes

of entrepreneurs. New firms make location choices at the neighborhood level and are then

subject to vacancies arising randomly within that area. Such neighborhoods are different

across industries.16

3.1 Constructing Economic Neighborhoods

Neighborhoods are economic in nature as they result from the collective choices of different

entities. Startup owners consider the characteristics of economic neighborhoods when making
15In terms of notation, this means redefining the subscript that identifies a location from l to bn that represents

a block b located in neighborhood n.
16For example, restaurants, hotels and touristic attractions might care differently about location character-

istics such as access to foot traffic, financial services or transportation infrastructure, than firms in the
manufacturing or the professional services sector.
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location choices. As these firms are small and face informational constraints, they take those

characteristics as given. As in Arzaghi and Henderson (2008), Liu, Rosenthal, and Strange

(2017), and Roche (2020), variation within a broad area (neighborhoods) provides identifi-

cation of block-level spillovers within that area. As in Greenstone, Hornbeck, and Moretti

(2010), counterfactuals locations (blocks within the neighborhood) are different across type

of firms (industries) reconciling the fact that different firms value location characteristics

differently.

I measure block attributes using the universe of firms in the four major Canadian cities for

the years 2002 to 2006. I estimate a block level propensity score each industry and city. The

propensity score parsimoniously captures the likelihood that a block is suitable for a firm in

a given industry.17 Then, neighborhoods are constructed following the ideas of propensity

score matching and propensity score stratification, in which instances that belong to the same

bin of propensity score are comparable. In particular, using the spatial clustering algorithm

developed in Campusano (2021), neighborhoods group adjacent blocks that have propensity

scores that are statistically indistinguishable from each other.

This and the next subsection summarizes the key aspects of the computation of the propensity

score and how it’s used to identify neighborhoods. Hereafter I use ’economic neighborhoods’

to distinguish neighborhoods that result from the clustering of blocks, from other definitions

of neighborhood boundaries such as postal codes, counties or census tracts.

3.1.1 Propensity Score

Neighborhoods are constructed under the presumption that a pre-choice propensity score

well represents the desirability of a block for for the entry of a new firm in a given in-

dustry. Therefore, if two adjacent blocks have an indistinguishable difference in the score

means that entrepreneurs are ex-ante indifferent between the two locations and the blocks are

treated as one unit. However, given that block characteristics vary over time, they are still

able to causally affect new firms outcomes, provided two conditions are satisfied. First, the

propensity score must be a sufficient statistic of the expected desirability of a block. Second,

entrepreneurs have imperfect information about the future evolution of a block. In other

words, within neighborhoods block-level economic conditions do not affect the probability a
17Heblich et al. (2019) and Qian and Tan (2021) use a similar approach for finding counterfactual location

choices for new plants.
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block receives a new firm.

The first condition is satisfied by using a comprehensive and detailed set of block-level char-

acteristics that drive firm location choices. These will be constructed for a pre-period to

address reflection issues. When a new firm chooses a location, its desirability is influenced by

supply and demand factors that matter differently across industries and cities. For these rea-

sons, I use data for the universe of firms (incumbents and startups) and workers to construct

a database of block-level characteristics before new firms make location choices. I obtain

amenities data at the block level using a rich point of interest dataset. Finally, I compute

the block level propensity score for each city and industry.

For each block, I compute the following measures of access to amenities, workers, firms and

residents for the period between 2002 and 2007.18 I use CEEDD to compute the number of

firms operating in each industry and the number of workers that reside and or work there. I

use the weights in the 2002 Statistics Canada’s input-output matrix to compute the number

of firms and workers in industries upstream and downstream the production process. I then

use the DMTI Spatial Inc. CanMap Postal Codes Enhanced Suite to compute access to

amenities. In particular, I compute the percentage of the land of a block that is used for

each of the following categories: Commercial, Government, Industrial, Parks, or Residential.

Finally, I compute the number of establishments in each of the following categories: Hotels,

Schools, Banks, Hospitals, Touristic Attractions, and Police and Fire Stations.19

Finally, for each block and industry, I predict the average annual probability of receiving a

firm in their industry using a conditional logit regression in which observed location choices

reveal preferences associated with the firm’s profit maximization problem (McFadden, 1973).

In practice, applying this approach to any location choice poses a problem related to the

definition of the spatial choice set. Ideally, small areas should be used, because factors

usually identified as relevant for location decisions apply at the local level and consequently

cannot be adequately taken into account when the model considers large areas in the spatial

choice set.
18The benefits (or costs) associated with a block are transmitted spatially. This means that the distribution of

these variables is smoother over the space. I incorporate this concept by calculating each block-level access
measure as the exponentially discounted-by-distance sum of each measure between a block and immediately
adjacent blocks.

19According to DMTI, this dataset comprises the location of the universe of Canadian business and recre-
ational points of interest at the establishment level. Among other things, it also includes land use informa-
tion at the block level.
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However, the use of small areas poses a difficulty for estimation, as the conditional logit

model does not handle large choice sets very well. Guimarães, Figueirdo, and Woodward

(2003) provides a solution to this problem by demonstrating that, under the assumption that

individual decisions are based exclusively on a vector of choice-specific attribute variables

common to all decision-makers, the coefficients of the conditional logit model can be equiv-

alently estimated using a Poisson regression, which I use instead.20 Appendix ?? provides

more details.

3.1.2 Neighborhoods as propensity score clusters

By using all firms in a given industry, the propensity score summarizes how an industry
internalizes the effect of different location characteristics in profits. By predicting the proba-
bilities for different industries, the differences in propensity score across industries showcase
how industries value location characteristics differently. To illustrate this, Figure 2 shows
the spatial distribution of the predicted probability for the manufacturing and entertainment
industries in a one kilometer radius around a major intersection in the city of Toronto.21

As expected, there is important variation across industry in the propensity score. Certain
locations within a city that might be desirable for one industry, might not be desirable for
another. Moreover, the way the propensity score propagates in space differs across industries.
The standard approach to neighborhoods is to use administrative or legally-defined bound-
aries. However, this can be a problem as administrative neighborhoods are delineated as a
result of an optimization process that does not necessarily align with agents’ decision prob-
lems. For example, postal codes are defined for the purpose of optimizing mail delivery and
census blocks (or tracts) are defined for the purpose of optimizing the process of a census.
A persistent misalignment between ‘legal’ and ‘economic’ boundaries that may lead to mea-
surement and inference biases that compromise research findings and the policies designed
around them. Figure 3 superpose administrative boundaries to panel (a) of Figure 2 and
shows a clear spatial misalignment.

For these reasons, I use Campusano (2021) proposed revealed preference approach to de-

lineate economic neighborhood boundaries. The algorithm uses historical geocoded location

choices to identify neighborhoods as a collection of similar-neighboring-choices. In particular,

neighborhoods are constructed by grouping together contiguous blocks based on the proba-

bility of observing a new firm in a given block. This is very similar in spirit to Rosenbaum
20Table (??) contains the complete list of characteristics in the model. Table (??) shows the estimated

parameters of the propensity score model. Discussion of results.
21To maintain confidentiality of CEED data, the estimated probabilities in these maps are the result of using

only the external DMTI data.
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and Rubin (1984)’s propensity score stratification that has been proved to significantly re-

duce the bias due to measured confounders when estimating linear treatment effects. Within

each propensity score stratum, treated and untreated subjects have roughly similar values of

the propensity score. Therefore, when the propensity score has been correctly specified, the

distribution of measured baseline covariates is approximately similar between treated and

untreated subjects within the same stratum.

[Figure 2 about here.]

[Figure 3 about here.]

Strata are formed by defining a threshold by which the data is divided in a previously

set number of stratum. This is done by ordering the estimated propensity score for each

location and then grouping them. This has some drawbacks. First, one needs to define

either the threshold or the number of stratum beforehand which can lead to some degree

of bias although it has been proved that by stratifying in something greater than quintiles

there is a substantial reduction in confounding bias.22 Second and most importantly for

this paper, defining stratum this way implies neighborhoods that are not compact in the

space. Campusano (2021) addresses these drawbacks by using semi-supervised clustering

methods.2324

In practice the algorithm works as follow. After computing the propensity score at the

block level, I compute a dissimilarity matrix by calculating the bilateral euclidean distance

only between adjacent blocks. This creates a sparse matrix populated by non-zero elements

around the diagonal. Adjacency constraints are enforced by assigning an arbitrarily large

number for the rest of the elements. The algorithm starts with each block as a neighborhood

by itself. Further iterations merge one neighborhood at a time so that the bilateral distance

between the neighborhood and the new elements are below a given threshold and together
22In fact, increasing the number of strata used should result in improved bias reduction, although the marginal

reduction in bias decreases as the number of strata increases (Cochran, 1968).
23It is a semi-supervised algorithm since the algorithm incorporates economic theory. Adding adjacency

constraints means I have an economic prior on how this clusters should look like, and by clustering over
an estimated propensity score I am assuming that the weights assigned to different attributes comes from
a location choice model.

24For more details about the properties of the clustering method, please refer to Campusano (2021). For
more details about this specific application please refer to Appendix (??).

16



minimize the within neighborhood variance in the propensity score.25 As an illustration,

Figure 4 showcases the same location as in the previous figures but now it overlays some of

the agglomerating steps undertaken in order to get to a neighborhood.

[Figure 4 about here.]

3.2 Characteristics of Economic Neighborhoods

I apply the algorithm to the estimated propensity score for each industry in each city. I

use five different thresholds and define them as functions of the standard deviation of the

propensity score. The thresholds are set at 2, 1, 0.5, 0.1 and 0.01 standard deviations of

the propensity score. Neighborhoods are composed of at least two grid-cells. Identification

of block-level spillovers relies on the assumption that, within neighborhoods blocks cannot

be distinguished. Put differently, it relies on the assumption that sorting occurs at the

neighborhood level only, meaning that startups locations within neighborhoods cannot be

predicted using block contemporaneous characteristics. I choose the threshold taking this

into account by selecting, for every industry and city, the maximum threshold that delivers

neighborhoods in which the estimated propensity score is uncorrelated or minimizes the

correlation with the number of new firms in a block within a neighborhood.

I test the resulting neighborhoods in the estimation sample (2002 to 2017) by computing a

propensity score for every block in every city and industry. I then correlate the contempora-

neous propensity score with the contemporaneous number of new firms in a block controlling

for neighborhood-year fixed effects. Table (3) reports the results of this exercise, and shows

that within neighborhoods for most cities and industries, the contemporaneous propensity

score is uncorrelated with the contemporaneous number of new firms. This provides a good

test for the degree to which controlling for neighborhood-years accounts for sorting, and it

shows that for some industries and cities the method provides better neighborhoods than for

others.26

25The use of thresholds is unavoidable for any approach that seeks to discretize a continuous territory (de
Bellefon et al., 2019). However, Campusano (2021) shows that in situations in which the distribution of
economic activity is highly skewed, neighborhoods are stable to changes in the threshold decreasing the
concerns about the use of an previously defined threshold. In any case, robustness to the threshold are
provided in the appendix.

26The application of the algorithm for Montreal seems to deliver neighborhoods that are not as good as
the neighborhoods for other cities. One possible explanation that requires further investigation is the
remarkable differences in legal system and culture that is between Montreal and the other cities in my
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Figure 5 serves as an example of the resulting neighborhoods. To maintain confidential-

ity of CEED data, these maps are the result of using only the external DMTI data. The

neighborhoods obtained using the full data are consistent with these maps and provide a

better approximation to economic neighborhoods. The main result from the exercise is that

neighborhoods are different from each other across industries. Typically industries that have

less reach due to window shopping or less within city tradability, such as professional ser-

vices and retail, have smaller neighborhoods than industries that are more tradable within

a city, like manufacturing and entertainment services. In general, neighborhoods can be

represented by a shape longer than it is wide, like a rectangle or an ellipse. Further visual

inspection shows that these neighborhoods tend to locate around major streets. This is true

for all industries, but more so for the manufacturing and trade industries. Moreover, the

smaller area of professional services and retail is given more by differences in length than

in width, with neighborhoods that are between 42% to 59% shorter than the manufacturing

and entertainment services.

[Table 3 about here.]

[Figure 5 about here.]

4 Local Spillovers

This section employs the economic neighborhoods constructed above to identify spillovers at

a hyper-local setting within neighborhoods. In this research design, adding neighborhood-

year fixed effects solves for the endogeneity in the error term of equation (1) and delivers

identification of the causal effects of block level characteristics over startup outcomes. The

new estimating equation for firm i’s starting operations in block b of neighborhood n at time

t turns into

y
(i,j)
bnt = x

(i,j)
t β +X

(j)
bntθ + λ

(j)
t + δ

(j)
nt + ϵ

(i,j)
bnt (2)

where the end-of-year outcome y
(i,j)
bnt depends on her own observed characteristics x

(i,j)
t , an

aggregation of characteristics of incumbent firms of industry j in block b within neighborhood

sample. This implies that location choices in Montreal are different than in the other cities and that the
propensity score is failing to account for them. This has implications over the algorithm.
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n at time t, X(j)
bnt, industry and time specific fixed effects, λ(j)

t , neighborhood-year fixed effects,

δ
(j)
nt , and a transitory shock ϵ

(i,j)
lt .

Table (2) in section (2) shows that a large fraction of new firms decide to start operations

in the main owners’s place of residence. In that scenario, it is most likely that the entrepreneur

has previous knowledge about the industrial environment of her place of residence. For that

reason, in this section I only consider new firms that open away from the entrepreneurs’

place of residence. This restriction will be relaxed in the next section where I model the

neighborhood choice decision.

4.1 Main Results

The coefficient of interest θ represent effect of the level and quality of incumbent firms over

startup outcomes. Provided that industrial, city and time differences are accounted for,

higher levels of incumbent employment and revenue are good measures of better exposure

to large and high quality firms. In particular, incumbent characteristics are measured as

the average employment and revenue of the firms in the same block one year prior the

entry of the startup. In this specification, identification of the elasticities is coming from

variation in the outcomes of otherwise similar startups randomly assigned to distinct but

otherwise similar blocks within a neighborhood. This means that controlling for the number

of incumbent firms, I interpret the elasticities of startups’ outcomes to these characteristics

as scale (average employment) relative to quality (average revenue) spillovers.

In addition to the main predictors and set of fixed effects, I include a series of controls and

firm characteristics that aim to account for “prior-to-launch” differences across startups and

for potential competition effects that might arise due to higher concentration of economic

activity. Prior-to-launch differences are a threat to identification as they might be correlated

with how “subject to vacancies” these new firms are. For example, entrepreneurs with previous

industry experience might have better knowledge about the differences across blocks within

a neighborhood, or firms with corporate partners might be able to delay entry if the vacancy

that arrives is not optimal. I control for these and other potential threats by including the

owners’ years of experience in the industry, a dummy variable for startups with corporate

partners, a dummy variable for startups that are controlled by many members of the same

family, and the number of prior businesses owned by the entrepreneurs. Finally, I also include

the number of incumbent firms in the block and a dummy variable when the the block has
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no firms or their firms have either zero revenue or employment.

[Table 4 about here.]

New firms often have either zero employment or revenue, meaning that estimating equa-

tion (2) in logs is not feasible. Recent research in the international trade literature makes the

case for using Poisson pseudo maximum likelihood (PPML) in scenarios with highly granular

data. As such, I implement PPML with high dimensional fixed effects (Bailey et al., 2021;

Silva & Tenreyro, 2006).27 All standard errors are clustered at the neighborhood-year level.

Table (4) shows the main results of the paper using end-of-year revenue (in panel a)

and end-of-year employment (in panel b) as outcomes of interest. Column (1) shows the

preferred specification for firms choosing locations away from the owners’ places of residence

using neighborhood-year fixed effects, the set of controls mentioned previously and only

neighborhoods that exhibit at least two new firms starting operations in different blocks.

The remaining columns show a series of exercises that test for robustness and identification

of the main results to different samples and specifications.

I find strong evidence of positive productivity spillovers of incumbents’ of the same indus-

try and located in the same block prior the firm starts operating. Within industry-specific

neighborhoods, exposure to larger incumbents increases both startups end-of-year revenue

and employment. While exposure to better incumbents increases startup end-of-year rev-

enue, it decreases startup end-of-year employment. I interpret these spillovers as productivity

spillovers increasing startups performance through outputs and efficiency. Column (1) shows

that, for end-of-year revenue, the elasticity to average incumbent revenue is about 0.02 and

the elasticity to average incumbent employment is about 0.12. For end-of-year employment

instead, estimates show an elasticity to average incumbent revenue of about -0.03 and to

average incumbent employment of about 0.22.

To give a sense of magnitude, these estimates indicate that going from the 10th to the 90th

industry-specific percentile of incumbent average employment increases the median startup

revenue by 78% and increases median startup employment by 121%. Moreover, they indicate

that going from the 10th to the 90th industry-specific percentile of incumbent average revenue

increases the median startup revenue by 8.2% and decreases median startup employment by
27Estimation of these type of models are subject to a problem of statistical separation. This problem arises

when fixed effects are able to separately identify observations without providing extra information for the
estimation of the parameters. This leads to convergence problems and/or incorrect estimates that are
corrected using Correia, Guimarães, and Zylkin (2020) estimation.
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8.6%. This means that accounting for industry differences, higher revenue incumbents affects

outcomes of new firms through helping new firms to achieve higher outputs and efficiency,

while larger incumbent firms affects outcomes solely through helping new firms to scale

up. These numbers are large and represent the importance of exposure to concentration of

economic activity for new firms.

The identification of these elasticities rely on fixed effects accounting for sorting across

neighborhoods in a given year. In that case, a threat to identification is the use of neighbor-

hoods constructed using the same data source as the one used for estimation. As mentioned

in the previous section, I address that threat by using a combination of a fixed pre-period of

the data with external data to only construct the neighborhoods and not for the estimation.

However, even though path dependency is unlikely in a growing cities during a period of

more than 10 years, it is still possible and could potentially bias the estimates. Columns

(2) and (3) test for this by not using neighborhood-year fixed effects or using 3-digits postal

codes instead. Results of these exercises provide larger estimates of the elasticities which is

consistent with upward biased estimates due location sorting, and with neighborhood-year

fixed effects helping to account for that. Column (4) test for differences between otherwise

similar firms that might affect sorting within neighborhoods. Column (5), (6) and (7) test

for sample definitions. Column (8) and (9) test for estimation method. All tests lead to the

same conclusion of positive local spillovers of incumbents over new firms.

Dynamics Location choices are dynamic. This is embedded in the observed sorting pat-

terns in the data, which are accounted for with neighborhood fixed effects. The natural

implication is to analyze the degree to which spillovers that are positive in the short term

persist over time. Table (5) reports the effects of location attributes over firm survival and

future moving choices. These estimates needs to be taken with caution as the larger the time

span after the founding year the more likely is the startup to affect incumbent firms, and

hence estimates would be biased. In that sense is more likely that estimates one year ahead

are better identified than estimates five year ahead.

Columns (1) and (2) report estimates from a specification identical to column (1) of Table

(4), except that the outcome of interest is given by an indicator variable equal to one if the

firm is alive one year after starting operations (column 1), if it is alive five years after start

operations (column 2). Both columns portrait a picture consistent with the main results,
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spillovers are positive and they materialize in higher probability of survival for startups

exposed to higher economic activity. However, these estimates show that exposure to larger

firms is better for firm survival than exposure to firms with higher revenues. This is consistent

with a story that implies startups first growing in size before growing in sales.

[Table 5 about here.]

Firms may wish to move across cities as they evolve. Columns (3) to (6) report the

extend to which early exposure to higher concentration of economic activity affects future

location choices. Results show that exposure to larger firms in the same industry decreases

the likelihood of moving one and five years after founding the company. However, exposure

to firms with larger revenue increases the likelihood of moving five years after founding the

company. There are many reasons why this would be. For example, firms may wish to accrue

knowledge gains in other location, like workers moving from large cities and taking a portion

of their urban wage premium with them (Glaeser & Maré, 2001). Firms may also wish to

move if their needs change with growth requiring different types of inputs, like in Duranton

and Puga (2001)’s theory of nursery cities.

Spatial Decay Table (4) shows that higher block-level concentration of economic activity

can lead to large productivity gains. Consistent with the idea that proximity matters, Table

(6) shows that hyper-proximity maximizes productivity gains. Table (6) reports estimates

from an specification identical to column (1) of Table (4), except that not only the char-

acteristics of the incumbents in the same block are included but also the characteristics of

the incumbents in all blocks within 300 meters of the block where the startup is located.

These additional incumbents are included by rings. Figure (1) illustrate how these rings are

constructed. The first ring includes all incumbents between 75 meters and 150 meters, the

second ring all incumbents between 150 and 225 meters and the third ring all incumbents be-

tween 225 and 300 meters. The average employment and revenue in these cases is discounted

by the inverse of the distance between the startup block and the incumbent blocks.

Estimates show that local spillovers primarily operate within 75 meters, and their effect

quickly fades as moving away from the source of exposure. Estimates of the elasticities within

the same block barely change relative to the baseline in Table (4). However, the elasticity

quickly decays towards zero from 75 meters away in the case of average revenue and from
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150 meters away in the case of employment. These results show that hyper-proximity to eco-

nomic activity is essential for spillovers, proving that spatial decay results from Baum-Snow,

Gendron-Carrier, and Pavan (2021) and Liu, Rosenthal, and Strange (2017) are generalizable

to the rest of the economy. Moreover, these results provide an additional check for identifica-

tion within neighborhoods. Including the surrounding blocks as controls account for sorting

occurring across rings within the neighborhood. Obtaining persistent estimates for the same

block exposure and non-significant estimates for the rings around it provides evidence that

the economic neighborhoods are well constructed and that the spillovers are well identified.

[Table 6 about here.]

Heterogeneity Different industries and linkages across industries are likely to generate

different levels and types of productivity spillovers. There is a long list of theories about

the micro-foundations of agglomeration and how they relate to entrepreneurship, new firms,

and their success (Chinitz, 1961; Jacobs, 1969; Marshall, 1890; Saxenian, 1994). These

theories are about differentials in returns, the availability of some sort of input, and/or the

environment. Separately identifying mechanisms has been a challenge that the rest of the

literature and myself have faced, and I do not intend to overcome. Instead, I use measures

that can be associated with one or another theory depending on the interpretation.

First, in the spirit of Faggio, Silva, and Strange (2017), I allow the elasticity to employ-

ment and revenue to differ across groups of industries while controlling for differences in

market conditions that may arise across them. Table (7) reports estimates from an specifi-

cation identical to column (1) of Table (4), except that the characteristics of the incumbents

in the same block are interacted with indicator variables representing 5 groups of firms as

in Glaeser, Kim, and Luca (2019). The interpretation of these coefficients are of elasticities

across groups of industries. Given that exposure is given at a very small scale, it is very

unlikely that there are differences in the environment across industries. In that case, what

my estimates are capturing is a mix of differentials in returns and the availability of some

sort of input (goods, services, knowledge). Results show that most of the industries have

positive overall same-industry spillovers. However, depending on the size of the incumbents

in a given location, the information and financial services and the manufacturing industries

might not. Employment-intensive industries (such as retail, trade and manufacturing) benefit

more from larger incumbent firms, while knowledge-intensive industries (such as professional,

23



information and financial services) benefit more from higher quality incumbents.

[Table 7 about here.]

Second, as in Ellison, Glaeser, and Kerr (2010) I use cross-industry connectivity weights

to study the importance of mechanisms underlying different theories of agglomeration. Table

(8) reports estimates from an specification identical to column (1) of Table (4), except that

incumbent characteristics are computed using cross-industry weights. This means that in-

cumbent from all industries and not only incumbents from the same industry are included in

this estimation. Column (1) reports results using equal weight to represent exposure to any

kind of economic activity,28 column (2) and (3) reports results using input-output weights to

represent exposure to incumbents upstream and downstream the production process, and col-

umn (4) reports results using occupational similarity weights to represent knowledge transfer

through workers performing similar occupations instead of firms performing similar activi-

ties.29

[Table 8 about here.]

Results using connectivity weights provide further evidence about the way productivity

spillovers work for new firms. Regardless of differences in magnitudes across cross-industry

weights, all estimates show positive spillovers between incumbent firms and startups. Qual-

itatively, these estimates support multiple agglomeration theories that recognize the impor-

tance of inputs for entrepreneurship (Chinitz, 1961; Jacobs, 1969; Marshall, 1890; Saxenian,

1994). Quantitatively, the use of cross-industry weights provides information about the rel-

ative importance of these theories at fine scales. For example, for input-output linkages,

the elasticities to average employment are significantly smaller relative to other linkages and

also relative to the elasticity to average revenue, which is consistent ideas that smaller in-

dependent incumbents encourage new firms as it would make it easier for new firms to find

suppliers (Chinitz, 1961; Saxenian, 1994). However, in terms of magnitudes, the elasticity
28The baseline estimates essentially assign a weight equal to one to all incumbent firms in the same block

that belong to the same industry as the startup, and zero otherwise. In this case, column (1) reports results
assigning all incumbent firms in the same block a weight equal one.

29FollowingEllison, Glaeser, and Kerr (2010) and Baum-Snow, Gendron-Carrier, and Pavan (2021), I con-
struct occupational similarity measures based on the 2002 US National Industry Occupation Employment
Matrix that for each industry, gives the share of employees in each four digit occupation. The weights
are constructed calculating the correlation between industries of the shares of employees in each four digit
occupation. I then scale each correlation down such that it sums one for each industry.
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to employment from input-output linkages is significantly smaller than exposure to same-

industry activity, which again smaller than exposure from workers performing similar tasks.

This is in line with knowledge flows that are more likely to occur between different industries

with workers performing similar tasks than within the same industry, an idea that is consis-

tent with spillovers depending not just on aggregate sizes but also on the nature of economic

interactions that occur with proximity (Jacobs, 1969).30

4.2 Local Spillovers

The evidence I provide in this section delivers important insights about the nature and scale

of productivity spillovers for new firms. On average, all types of new firms in my sample

have important gains from concentration of economic activity that leads to better short

and medium term economic outcomes. However, proximity to such concentration is very

important as gains fade rapidly with distance. Moreover, there is stark heterogeneity in these

results across industries and cross-industry linkages. These results have direct implications

over the understanding of the role of economic conditions for new firms success, and showcase

that there is no one policy that fits all.

These results use within neighborhood variation to identify local effects. This, the results

apply directly only to differences in exposure occurring within neighborhoods. Moreover, the

implications do not account for the important process underlying the location choice made

by entrepreneurs. Recall that within neighborhoods, new firms are subject to vacancies

and hence entrepreneurs do not have influence over which block within neighborhoods they

will end up operating. The use of neighborhood fixed effects controls for fixed unobserved

differences within the boundaries of the newly defined geographies. This allows me to control

for sorting into blocks within neighborhoods. However, entrepreneurs do make a decision

at the neighborhood level. Analyzing how the elasticities change while accounting for this

decision informs about the importance of entrepreneur-driven sorting relative to location

attributes for new firms. I attempt to do this with a entrepreneur location choice model that

I develop in the next section.

30This type of weights have been used before to capture labor pooling. I interpret a worker moving from one
firm to another and transferring knowledge through that movement as knowledge spillovers although it is
technically part of the definition of labor pooling. I make this distinction because in such small geographies,
labor pooling and knowledge spillovers can be operating through similar channels.
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5 Local Spillovers and Neighborhood Sorting

To account for entrepreneurs sorting into neighborhoods, this section develops a two step

model of neighborhood choice. The model builds on G. Dahl (2002), which proposes a semi-

parametric estimation method for polychotomous choice models. The original model focuses

on migration choices where self-selection arises from differentials in returns to education

across locations within a country. In my framework, choices are limited to neighborhoods

within a city and self-selection occurs as a consequence of entrepreneur-specific preferences for

location. After an entrepreneur has chosen a neighborhood, real estate vacancies are realized

and the startup is assigned to a block within that neighborhood. As in the previous section,

these vacancies arise randomly within neighborhoods. This means that entrepreneurs do not

perfectly observe outcomes at the time of the decision, and can only make decisions based

on the expectation of outcomes at the neighborhood level.

As a preview, I estimate this model in two steps. The first step consists of estimating

the probabilities of selection into neighborhoods. I identify these probabilities using personal

preferences for location that I capture by allowing the probabilities to across entrepreneurs

based on their demographics and distance to their previous place of residence. The sec-

ond step uses these probabilities to construct correction functions that are included in the

outcome equation as regressors. These correction functions account for self-selection into

neighborhoods.

5.1 Model

In this section, I present a Roy model for multiple location choice that builds on G. Dahl

(2002), adapting the analysis to startup neighborhood choices and introducing uncertainty

on future outcomes through random block assignment within neighborhoods. For simplicity,

I suppress time, industry, and city subscript the first subsections where I define the model. I

add them back in the estimation subsection.

Consider I entrepreneurs facing N neighborhoods. In this stylized world there are two

periods. In the first period, conditional on deciding to start to operate, entrepreneurs se-

lect a neighborhood following an expected utility maximization process that includes both

pecuniary and non-pecuniary components. In the second period, once a block has been as-

signed, the firm starts operation and outcomes are realized. The model assumes that even
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though entrepreneurs have uncertainty about which block within a neighborhood they will

be assigned, there is no uncertainty about expected outcomes or personal preferences across

all neighborhoods. Hence, in the first period, each entrepreneur i compares the expected

benefits obtainable in each of the neighborhoods and opts for the one that delivers the best

bundle of expected-pecuniary and non-pecuniary benefits.

Formally, an entrepreneur’s expected utility for neighborhood n is a function of two com-

ponents: a pecuniary component given by their startup expected outcomes in that neigh-

borhood, and a non-pecuniary component that represents the entrepreneur’s neighborhood-

specific location preferences:

V i
n = yin + tin. (3)

In (3), V i
n indexes utility, yin is the expected outcome of the firm, and tin is a vector indexing

personal preferences for opening a firm in neighborhood n. This vector of personal prefer-

ences, tin, encompasses all non-pecuniary utility components that could determine the utility

of entrepreneur i starting operations in neighborhood n. These include local characteristics

such as cultural and geographical amenities, personal connection with the neighborhood and

commuting time.

In order to obtain expected outcomes, I use equation (1) to define startup potential

outcome in block b of neighborhood n as,

yibn = xiβ +Xbnθ + νi
bn, (4)

in which yibn denotes a firm outcome like revenues or employment, xi are firm characteristics,

Xbn denotes an aggregation of characteristics of incumbent firms, and νi
bn is an idiosyncratic

term. These outcomes are not perfectly observed by the entrepreneur at the time of her

decision, as they have uncertainty about the specific block within a neighborhood that they

will be assigned. However, they know that assignment within neighborhoods is uniformly

distributed. This means that entrepreneurs make location choices not considering the po-

tential outcomes in a given block, but the expected potential outcomes in the neighborhood

that contains that block. Taking expectations on equation (4) leads to,

yin ≡ Ei
n

[
yibn | xi

]
= xiβ +X

i

nθ + Ei
n

[
νi
bn | xi

]
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where X
i

n = Ei
n [X

i
bn] corresponds to the unconditional mean of incumbents characteristics

at the neighborhood level. The assumption of uniform assignment within neighborhoods has

implications about the structure of the error term,

Ei
n

[
νi
bn | xi

]
= εin

which shows that idiosyncratic shocks are distributed such that the expectation at the neigh-

borhood level is idiosyncratic as well. Using this equation, the deviation of the expected

outcomes of a startup if they were to start operating in neighborhood n from the average of

the entire population is given by,

yin − E
[
yibn | xi

]
= εin (5)

This equation simply states that the deviation of entrepreneur expected outcomes from the

average of other startups given her observable characteristics is the neighborhood specific

component of the error term νi
bn in equation (4).

Without making specific assumptions about the personal preferences of entrepreneurs, I

define similar equation for the deviation of entrepreneurs taste for location relative to the

population average,

tin − E
[
tin | zi, din

]
= µi

n (6)

this implies that the expression for V i
n can now be written in terms of population averages (or

the so called sub-utility functions in the selection literature) and an error component specific

to the entrepreneur-firm in a given location,

V i
n = Vn + ein (7)

where V i
n = E [yibn | xi] +E [tin | zi, din] and ein = εin+µi

n. We can use this expression to define

the following neighborhood selection process for firm-entrepreneur i,

M i
n = 1 if and only if V i

n + ein > V i
k + eik ∀k ̸= n (8)

= 0 otherwise

which means that outcomes of i are only observed for neighborhood n such that M i
n=1, which
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is the neighborhood that maximizes the expected utility of the entrepreneur. Specifically,

outcomes are only observed if all selection equations in (8) are simultaneously satisfied. Thus,

firms observed operating in neighborhood n are not a random sample of the population; hence,

E
[
νi
bn|M i

n = 1
]
= E

[
εin|M i

n = 1
]

= E
[
εin | ein − eik ≤ V i

n − V i
k ∀k ̸= n

]
̸= 0 (9)

where E [νi
bn|M i

n = 1] is the selection bias for i.

5.2 Correcting for Neighborhood Sorting

The most common procedure for estimation of models with self-selection and binary outcomes

is the Heckman selection model. In polychotomous choice models, the selection correction

term can be can be estimated via a conditional logit model or its extension the nested logit

model which, after some transformations, can be included in the outcome equation to control

for selection into choices (Vella, 1998).

All these methods rely on additional assumptions on the joint distribution of the error

terms in the outcome and selection equations, as departures from the true joint distribution

can lead to severe bias in the estimates as the size of the self-selected sample increases. G.

Dahl (2002) developed a semi-parametric estimation approach motivated by the observation

that in single-index selection models, the selectivity bias can be written as a function of the

probability of selection given covariates (Ahn & Powell, 1993; Lee, 1983).

The intuition of G. Dahl (2002) method is as follows: the probability of observing a

startup’s outcome in block b of neighborhood n is related to the probability that V i
n is the

maximum of all sub-utility functions. Thus, the joint distribution between the error term in

the earnings equation (εibn) and the differenced sub-utility error terms {ein − eik}∀k ̸=n can be

reduced from N dimensions to two dimensions: the first dimension is the outcomes error and

the second is the maximum order statistic of the differenced sub-utility functions. The key

assumption is that this bivariate distribution does not depend on the sub-utility functions

themselves, except through a small number of choice probabilities. This allows the researcher

to express the selection correction term in the earnings equation (analogous to the inverse

Mills ratio term in the canonical Heckman selection model) as a function of a small number
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of observed choice probabilities. Without this assumption, the researcher would be required

to estimate an (N − 1)-dimensional integral. This becomes quickly infeasible as N grows

large, as is the case in the current setting.

Formally, the selection rule in (8) implies that,

yin is observed iff max
k ̸=n

(
V i
n − V i

k + ein − eik
)
≤ 0 (10)

where maxk (•) correspond to the maximum over all neighborhoods k ̸= n. Thus, any

selection bias in yin is driven by the probability event that the maximum of the collection of

random variables {V i
n − V i

k + ein − eik}k ̸=n is less or equal to zero. This means that when the

distribution of this maximum is known, selection bias can be controlled in the same way as

in a binary choice models under some assumptions.

In particular, if we believe that the distribution of the error term in the outcome equation,

ε
(i)
n , is normal and that the distribution of the random portions of the indirect utility function,

{ein − eik}∀k ̸=n, are assumed to be independent and identically distributed with the extreme

value distribution. Then, a transformation of the maximum order statistic to normality

would allow us to assume a joint bivariate normal distribution for the error term in the

outcome equation and the transformed maximum order statistic. Then, a simple Heckman-

type correction will control for selectivity bias, by adding a term that takes the form of the

inverse Mill’s ratio to the outcome regression function.

The formulation of neighborhood selection and firm outcomes in equations (4) and (10)

implies that outcomes equations can be rewritten as multiple-index, partially linear models:

yibn = xiβ + Xbnθ + M i
n × Ωn

(
V i
1 − V i

n, V
i
2 − V i

n . . . , V
i
N − V i

n

)
+ µi

bn (11)

where Ωn (•) = En [e
i
n|V1 − Vn, V2 − Vn . . . , VN − Vn] , µi

n is an error term with mean zero

in the conditional sample for neighborhood n, and M i
n is a dummy variable that equals

one if firm i chooses neighborhood n. By controlling for all sub-utility differences through

unknown equations ΩN
k for every possible neighborhood k, this multiple index equation suc-

cessfully controls for neighborhood self-selection. The caveat of this equation though is that

it brings back the problem of high-dimensionality. However, we can combine this equation

with Lee (1983)’s maximum order statistic approach to reduce it by making the following
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index sufficiency assumption,

gn

(
εin,max

k∈N

(
V i
n − V i

k + ein − eik
)
|V1 − Vn, V2 − Vn . . . , VN − Vn

)
= gn

(
εin,max

k∈N

(
V i
n − V i

k + ein − eik
)
|Pi

n

)
(12)

where gn is the density function of a well defined joint distribution function for the error term

in the outcome equation and the maximum order statistic and Pi
n is the probability that firm

i chooses neighborhood n given {V i
n − V i

k + ein − eik}∀k ̸=n. This assumption means that all

the information about all potential alternative neighborhood is included in the probability

that an entrepreneur chooses one specific neighborhood. Under this assumption, equation

(11) can be simplified to a single index equation,

yibn = xiβ +Xbnθ +M i
n × λn

(
Pi
n

)
+ ωi

bn (13)

where for each neighborhood n, λn (•) is an unknown function of the single index Pi
n, and ωi

bn

is an error term. Providing there is a good estimator for Pi
n that accounts for all sub-utility

functions, λ (•) corrects for self-selection into neighborhood n since by construction the error

term ω
(i)
nt has zero mean given the selection probability, the fact that the firm is observed in

that neighborhood and observables.

Even though the index sufficiency assumption allow us to decrease the dimensionality

of the problem and correct for self selection into neighborhoods, it is not without strong

restrictions. Index sufficiency holds, for example, if outcome errors are composed of a firm

level fixed effect that is invariant to entrepreneur characteristics including their place of

residence. On the other hand, this assumption is less likely to hold in a setting where, for

example, there is a correlation between that fixed effect with location characteristics. This

is important to reconcile the fact that as showed in (2.2), entrepreneurs tend to open their

firms at their place of residence disproportionally more than in other neighborhoods across

the city. I incorporate this into the construction of the correction functions by allowing that

the correction function varies across entrepreneur characteristics and not only including the

first best probability but also the probability to start operations in their place of residence.

This acts as an exclusion restriction that discuss in the next section together with some

technical aspect of the estimation.
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5.3 Estimation details

In this section, I discuss details about the estimation and identification of equation (13). I

first discuss how I separately identify firm outcomes from personal preferences for location.

Then, I detail the estimation process that, as in other implementations of similar models,

consist of two stages. First, I estimate neighborhood choice probabilities. Second, I use these

probabilities to construct correction functions that I correct the error term of (4) and allows

me to obtained unbiased estimates by estimating equation (13) using ordinary least squares.

Identification

As discussed in other implementations of the extended Roy model (Bayer, Khan, & Timmins,

2011; G. Dahl, 2002; D’Haultfœuille & Maurel, 2013; Ransom, 2021), separately identifying

outcomes from non-pecuniary preferences requires an exclusion restriction—a covariate which

appears in the neighborhood choice probabilities but does not affect startup outcomes.

Section (2.2) showed that not only do entrepreneurs tend to open their firms at their

place of residence disproportionally more than in other neighborhoods across the city, but

that in the case of deciding to open in another location, they also do so closer to their place

of residence. Moreover, it shows that entrepreneurs of different demographics make different

neighborhood choices regardless of location characteristics.

This fact is heavily related to the premise of the paper and is the root of the exclusion

restriction I use to separately identify firm outcomes from personal preferences for location.

Where to open a new firm is one of the most important decisions entrepreneurs have to

face, and that often this decision is not only influenced by the location potential for the new

firm but also by personal preferences. Many entrepreneurs are willing to substitute some

firm profit for benefits of living in attractive places or places to which they have some sort of

personal connection (M. Dahl & Sorenson, 2012; Figueiredo, Guimarães, & Woodward, 2002;

Kulchina, 2016). Preferences also influence investment decisions, as home bias in investment

portfolios (Goetzmann & Kumar, 2008).

The primary threat to the validity of the exclusion restriction is if the neighborhood

decision of the entrepreneur is driven by advantageous draws of the outcome equation at the

place of residence. In other words, there are unobservable productivity benefits of opening in

the place of residence of one of the owners. Even if there might be some benefits of starting a

new firm in the place of residence, these are likely to be in the form of cheaper rents which are
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assumed to be constant across the city and affect all entrepreneurs in the same industry in

the same way. Moreover, regardless of that fact, there is a strong correlation across industries

and cities in the propensity to start operations.

The primary threat to the validity of the exclusion restriction is that firms that choose

to start operations away from the place of residence are doing so by firm specific benefits

of agglomeration economies. This is related to Baum-Snow, Gendron-Carrier, and Pavan

(2021) and Guzman (2019) that finds that “movers” are more likely to be high quality firms.

Even though this might be possible, evidence in Section (2.2) shows owners of different

demographics (likely unrelated to productivity, such as gender, age and immigrant status)

make different location choices. Hence, the propensity to open in the place of residence, or

any place for that matter, appears to be in part driven by entrepreneur personal preferences.

Choice Probabilities

The formulation of equation (13) assumes the researcher possesses consistent estimates of the

relevant neighborhood choice probabilities. In response to the known drawbacks of models

that require strong distributional assumptions (like the conditional logit model), researchers

like G. Dahl (2002) and Ransom (2021), have used non parametric estimators of the proba-

bilities. This estimators have the advantage that it allows the researcher to not model the

way the sub-utilities depend on location-specific characteristics. Moreover, it allows them to

avoid making strong distributional assumptions.

However, data requirement is an important limitation that forces researchers to compro-

mise representativity of the estimates in order to obtain cells of data that contains enough

variation to compute the probabilities.

The objective of this paper does not rely on the separate identification of personal pref-

erences from firms outcomes. It only focuses on cleaning up the selection bias produced by

the effect that personal preferences have on location choices. This distinction allows me to

treat this as a classification problem, in which given entrepreneurs/location characteristics

it assigns a probability to each location providing they maximize the fit of the estimated

probabilities to the observed location choices.

Classification problems are common in computer science applications in which methods

are created to provide quick and accurate results with large amounts of data, and more

importantly for this case, very large choice sets. In particular, neural networks models
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allows for data-oriented modifications from the text-book McFadden (1973) model to be

able to handle not only large choice sets but also large amounts of independent variables

(or choice features as called in the machine learning literature). This implies that I can

relax the constraint of making parametric decisions about the set of variables that affect

the sub-utilities by adding a regularization parameter that penalizes the number of variables

included.

In particular, neural networks are mathematical tools that are loosely inspired by the

functional aspects of biological neural systems. Biological neural systems consist of multiple

nodes, called neurons, that communicate through synapses. Typically, there are three sets of

nodes: Input nodes, intermediate (hidden) nodes, and output nodes, and each node category

plays a different role. Input nodes receive input information, output nodes yield output

signals, and intermediate nodes receive signals from input nodes, and manipulate those signals

to give results to output nodes. Conditional choice models share similar features, in which

choice-specific characteristics (input note) are translated (intermediate node) into choice-

specific probabilities (output node).

This characterization is useful, as it means I can use neural networks to compute entrepreneur-

specific probabilities at the neighborhood level. This is done treating each individual as a

unique node in the network. Each node provides information about the relationship between

features and choices and informs the rest of the network through forward and backward

loops. This is done in sequence, in which each node multiplies input values by a weighting

vector, adds a bias, and then applies a non-linear activation function like a logit function

(also called softmax). Outputs of each node are propagated (and back-propagated) through

the network which realizes the true power of neural networks - the ability of early layers to

learn representations that can be utilized by later layers in the network.

This process is done using algorithms that optimize the value of an objective function

such as a likelihood function. In a seminal paper, Kingma and Ba (2017) proposed the

Adam algorithm, which has quickly become the standard in computer science as it achieves

unbiased estimates fast. Adam is an adaptive learning rate method, which means, it computes

individual learning rates for different parameters. It does so using the estimations of first

and second moments of gradient to adapt the learning rate for each weight of the neural

network. It then uses the learning rates to update the weights (or parameters) that govern

the relationship between choice characteristics and probabilities, and then activates the node
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by calculating the loss rate. This is done a maximum amount of times (iterations or epochs

in the machine learning literature) or until convergence, whichever comes first. Standard

errors of estimated parameters are equal to the square root of the inverse of Hessian of the

log-likelihood at the optimal point.

I use this algorithm to compute choice-specific probabilities. My implementation relies

on the fact that in order to apply the algorithm off the shelve and being able to calculate

individual-choice specific probabilities we need to provide the algorithm with data at the

chooser-choice level. Entrepreneurs in my setting face hundreds if not thousand of possible

neighborhoods within a city which means creating such dataset ex-ante is not feasible.31

Table (9) shows descriptive statistics of the estimated probabilities using entrepreneur

demographics and distance to their first residential neighborhood as an instrument for neigh-

borhood choices. In my data, chosen neighborhoods have a mean rank of 31.29 out 189.6

available neighborhoods to choose from. This is consistent with estimates found in Qian and

Tan (2021) that showcase a similar trend and imply that there might be important unobserv-

ables that I cannot account for with my specification. If these unobservables are correlated

with sorting into neighborhoods, this is a threat to identification. However, the flexibility

of the neural network approach reduces the importance of this problem relative to other

approaches, such as a nonparametric estimation, as estimated probabilities are entrepreneur-

specific.32

[Table 9 about here.]

Correction functions

After computing entrepreneur-neighborhood level probabilities, I use them to compute cor-

rection functions for each entrepreneur and neighborhood. Correction functions enter the

outcome variable as regressors and allows unbiased ordinary least square estimates.
31I develop an implementation of the algorithm based in the python package pytorch. I modify the off-the-

shelf algorithm to do this in the backend and developed a Stata program that allowed me to integrate it
with the whole workflow of the rest of the paper.I call this package nmlogit or neural multinomial logit and
it is in continuing development. It can be found in https://github.com/rcampusa/nmlogit. Suggestions
and comments are heavily appreciated.

32Table (9) highlights interesting sorting patterns. Besides the fact that chosen neighborhoods are often below
in the ranking of choices, the average of estimated probability for opening a firm in the place of residence
is matched with the empirical probability of opening at home. Moreover, it shows that even though the
probability is high, the ranking is lower than the chosen neighborhood but with higher variance.
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Using neural networks for computing probabilities allows for probabilities that are entrepreneur-

location specific. In previous work, researches have needed to make assumptions about how

different (or equal in their case) the correction functions are across individuals. This assump-

tion allowed them to compute estimates of the probabilities for group of people instead of

individuals themselves. I don’t need to make such assumption.

Given that entrepreneurs tend to open their firms at their places of residence dispropor-

tionally, the index sufficiency assumption in equation (12) likely invalid. This is because

the probability of the first best does not necessarily include all the information used in the

selection process. To account for this, I also control for the probability associated with their

neighborhood of residence, which should account for the residual information left by the first

best.

5.4 Local Spillovers and Location Sorting

The estimates in Section 4 are obtained using the within-neighborhood variation. Moreover,

they are based on startups that decide to open away from entrepreneur places of residence.

Table (2) in section (2) showed that an important portion of new firms decide to start

operating in their places of residence. Moreover, it shows that different owners make different

location choices, which implies that sorting is important in this setting. I now discuss the

parameter estimates of the outcomes equation with and without the selection correction and

using the full sample of startups.

In principle, standard errors of the parameters associated with the selection functions

should be adjusted to account for the fact that they are estimated which might bias the coef-

ficients of the correction functions as the true probabilities are not observed. Unfortunately,

the implications for inference of using a model selection algorithm in the first stage are not

well understood, so it is not clear how to proceed (Mullainathan & Spiess, 2017).

To estimate the unknown correction functions, I depart from using a flexible polynomial

function of the probabilities as discussed in G. Dahl (2002). Previous studies show that

including a higher degree polynomial or a larger number of probabilities results in much less

precise estimates with no appreciable increase in the Wald test statistic of joint significance

of the polynomial. Instead, as δ(j)nt is very high dimensional, interacting it with the estimated

probabilities is flexible enough to account for sorting patterns occurring across neighborhoods.

The updated estimating equation for startup i’s operating in block b of neighborhood n at
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time t is

y
(i,j)
bnt = xiβ +X

(j)
bntθ + δ

(j)
nt ×

(
star

P
(i,j)

nt ,
home

P
(i,j)

nt

)
+ ω

(i,j)
bn (14)

where the fixed effect δ
(j)
nt is now interacted with either the first best probability,

star

P
(i,j)

nt , or

the probability of opening in the place of residence,
home

P
(i,j)

nt .

Table (10) reports the results for the estimates of block-level spillovers while accounting

for sorting within and across neighborhoods. Estimates show that accounting for sorting into

neighborhoods increases the elasticities to average incumbent employment between 25 to

50%, while it decreases the elasticities to average revenue between 30 to 40%. Depending on

the specification, differences between these estimates are slightly significant, which indicates

that there even though there is sorting across neighborhoods its effects over the estimates is

inconclusive. However, the signs of the differences provides insights that are consistent with

the evidence within neighborhoods and that was highlighted throughout the rest of the paper.

Startups benefit more from exposure to larger firms than from from exposure to smaller firms

with higher revenue. This indicates that, on average, scale effects are more important for

new firms early stages.

[Table 10 about here.]

6 Conclusions

This paper is about entrepreneurs, their startups, and the spatial scale of productivity

spillovers. A substantial amount of evidence for regions and cities shows that firm and worker

productivity increases in proximity to a high concentration of economic activity. This paper

provides evidence that productivity spillovers apply to very local environments within cities

and positively affect new firms’ outcomes in the short and medium-term. However, proxim-

ity to such concentration is essential as gains fade rapidly with distance. Using a structural

model, I find scant evidence of sorting across neighborhoods within cities. Accounting for

sorting accentuates the patterns observed within neighborhoods. On average, firms benefit

more from exposure to larger firms than from exposure to firms with higher sales. Given the

importance of new firms in the economy, this type of study informs public policy and private

efforts that aim to concentrate economic activity. This paper provides evidence that suggests
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that any type of effort that encourages concentration of economic activity should do it at

very local levels and do it differently across industries.

Results are remarkably heterogeneous across industries and types of exposure. I use a

newly developed algorithm to account for differences in the sorting patterns within neighbor-

hoods across industries. I do this by recognizing that what one industry may find desirable,

another industry might not. This allows pooling the data across industries with less con-

cerns about the external validity of the results. Results are consistent with productivity

spillovers operating differently across industries and showcase that even though the aver-

age firm benefits more from exposure to larger firms, this is not the case for all industries.

Employment-intensive industries benefit relatively more from larger incumbent firms, while

for knowledge-intensive industries is the opposite. Moreover, results from cross-industry

linkages show that these spillovers are consistent with several theories of agglomeration.
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Figures

Figure 1: Illustration of Hexagon Grid

Note: Each firm is assigned to an
hexagon of 75 meter sides. Incum-
bents characteristics are computed at
the hexagon level. The area covered by
one hexagon is similar to a city block.
Because of that, in the rest of the pa-
per I refer to hexagon cells and blocks
interchangeably. The rings highlighted
around the center grid will be used to
study spatial decay.
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Figure 2: Spatial Distribution of Propensity Score

(a) Manufacturing (NAICS 3) (b) Entertainment and Food Services
(NAICS 7)

Notes: This figure shows the spatial distribution of the predicted probability for the
manufacturing and entertainment industries in a one kilometer radius around a major
intersection in the city of Toronto. To maintain confidentiality of CEED data, these
probabilities are estimated using only the external DMTI data.
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Figure 3: What is a Neighborhood?

(a) Postal Codes (6-digit Postal Codes) (b) Local Delivery Units (3-digit Postal
Codes)

Notes: This figure superpose 3 and 6 digit postal codes to the previous figures to show
that the spatial distribution of the predicted probability is not homogeneous within
3-digit postal codes and present high spatial correlation across 6-digit postal codes,
which poses an identification concern about using postal code fixed effects to account
for sorting.

Figure 4: Illustration of the Algorithm

The algorithm starts with each block as a neighborhood by itself. Further iterations
merge one neighborhood at a time so that the bilateral distance between the neigh-
borhood and the new elements are below a given threshold and together minimize the
within neighborhood variance in the propensity score.
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Figure 5: Economic Neighborhoods

(a) Manufacturing (b) Retail

(c) Professional Services (d) Entertainment and Food Services

Notes: Each figure shows the example of resulting economic neighborhoods and how
they are different around the same intersection across industries. To maintain confi-
dentiality of CEED data, the estimated probabilities and neighborhoods in these maps
are the result of using only the external DMTI data.
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Tables

Table 1: Descriptive Statistics of Firms

Incumbent Startup Inst. Entrant
Revenue (in millions, 2000 CAD) 2.245 0.158 1.704
Employment 6.73 0.75 3.39
Alive within 5 years 0.862 0.424 0.351

# Firms 1,347,920 317,606 248,364
# Firms Years 7,873,676 317,606 248,364
Note: Statistics are for all firms in the Calgary, Montreal, Toronto and
Vancouver CMAs for the 2007-2018 period. Each statistic is the mean across
their type of firms. Startups and institutional entrants are only accounted for
during their founding year, incumbents are during all years.

Table 2: Descriptive Statistics of Firm Locations

Incumbents Startups Inst. Entrant
Located in residence of a founder* 0.446 0.633 0.821
Move within 5 years 0.567 0.679 0.652
Firms in Same Industry 6.846 5.256 11.18
Average Revenue Employment Same Industry 14.739 6.516 22.821
Average Revenue Incumbents Same Industry 3,241,941 1,135,098 3,831,553
Number of Institutional Entrants 2.704 3.597 5.858
Number of New Startups 4.023 7.734 4.599

Notes: This table reports means of block-level characteristics for the location of the three types of firms. For
startups and inst. entrants, these characteristics correspond to the founding year. For incumbents, these
characteristics correspond to the average along all years. *In the case of Inst. Entrants, the percentage of
firms located in residence of a founder is given relative to the place of operations of the parent company.
In the case of incumbents is given by either the residence of individual owners or place of operations of the
parent company.
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Table 3: Number of Startups in a Block

Toronto Vancouver Montreal Calgary
Manufacturing 768.6 -233.6 982.8** 858.8

(0.55) (-0.32) (2.86) (1.31)
Wholesale Trade -1789.4 -1683.4 411.1 1151.1

(-1.02) (-1.60) (1.01) (1.74)
Retail Trade 1358.1 -2529.3 991.0 4255.4***

(0.63) (-1.20) (1.81) (3.69)
Transportation 7878.5 -1075.6 972.3 951.3

(1.93) (-0.97) (1.46) (0.38)
Information 2503.0 719.2 655.0** -316.6

(1.71) (0.77) (2.62) (-0.59)
Finance and Insurance 1686.3 998.6 1859.7** -61.76

(0.96) (0.91) (3.23) (-0.06)
Real Estate 6893.2** -184.3 2569.1*** -737.4

(3.27) (-0.11) (4.01) (-0.52)
Professional, scientific and technical services 5154.8 -2067.6 4080.9*** -1220.2

(0.67) (-0.77) (3.31) (-0.19)
Management of companies and enterprises 1867.9 564.6 661.9** 759.6

(1.83) (1.08) (2.72) (1.28)
Support, Waste Management and Remediation 3753.4* 247.1 1268.9* 1203.6

(2.33) (0.27) (2.00) (0.75)
Arts, Entertainment and Recreating 2580.0* 1083.6* 172.4 -216.7

(2.37) (2.32) (0.83) (-0.44)
Accommodation and Food services 2352.0 2783.3* 336.8 761.9

(1.20) (2.30) (0.75) (0.84)
Notes: This table shows the correlation between the contemporaneous propensity score with the
contemporaneous number of new firms in a block controlling for neighborhood-year fixed effects.
These neighborhoods are the result of the algorithm process described in the text and they are
city-industry specific.
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Table 4: Main Results

(a) end-of-year Revenue
(1) (2) (3) (4) (5) (6) (7) (8)

Log (Average Employment Same Industryt−1) 0.120** 0.171*** 0.137*** 0.157** 0.143** 0.0921** 0.108** 0.120**
(0.0523) (0.0416) (0.0229) (0.0569) (0.0515) (0.0411) (0.0418) (0.0526)

Log (Average Revenue Same Industryt−1) 0.0273** 0.0351* 0.0365** 0.0175** 0.0282** -0.00245 0.0345** 0.0273**
(0.0129) (0.0187) (0.0134) (0.00817) (0.0128) (0.00744) (0.0123) (0.0127)

Log (# Incumbents Same Industryt−1) -0.114* -0.00935 0.00371 -0.114** 0.0357 -0.00624 -0.114*
(0.0599) (0.0332) (0.0305) (0.0572) (0.0412) (0.0387) (0.0602)

No Incumbent Economic Activityt−1 0.108 0.299* 0.431** 0.116 -0.0586 0.226** 0.108
(0.134) (0.174) (0.166) (0.133) (0.0663) (0.115) (0.137)

Previous Ownership Experience 0.0490*** 0.0104*** 0.0175*** 0.0384*** 0.102*** 0.0481** 0.0490***
(0.0121) (0.00286) (0.00395) (0.00846) (0.0157) (0.0157) (0.0120)

Previous Industry Experience 0.0732*** 0.0672*** 0.0674*** 0.0389*** 0.0606*** 0.0617*** 0.0732***
(0.00700) (0.00772) (0.00502) (0.00848) (0.00657) (0.00493) (0.00688)

Number of Owners -0.0697 -0.00356 -0.0492 -0.143** 0.0379 -0.0137 -0.0697
(0.0586) (0.0629) (0.0397) (0.0554) (0.0760) (0.0417) (0.0604)

Corporate Partner 0.246 0.248 0.131 0.202* 0.549** 0.806*** 0.246*
(0.152) (0.173) (0.277) (0.116) (0.220) (0.153) (0.146)

Family Control 0.470** 0.482*** 0.556*** 0.631*** 0.547*** 0.744*** 0.470**
(0.149) (0.120) (0.0974) (0.146) (0.0821) (0.0868) (0.149)

Number of Observations (Startups) 30,318 41,112 81,319 30,318 37,944 81,586 142,465 30, 318

(b) end-of-year Employment
(1) (2) (3) (4) (5) (6) (7) (8)

Log (Average Employment Same Industryt−1) 0.218*** 0.333*** 0.244*** 0.252*** 0.220*** 0.209*** 0.279*** 0.218***
(0.0442) (0.0443) (0.0221) (0.0459) (0.0439) (0.0383) (0.0269) (0.0449)

Log (Average Revenue Same Industryt−1) -0.0257* -0.0348** -0.0238** -0.0170** -0.0259* -0.0135** -0.0212*** -0.0257*
(0.0139) (0.0131) (0.00758) (0.00776) (0.0139) (0.00613) (0.00597) (0.0136)

Log (# Incumbents Same Industryt−1) -0.0305 -0.117** -0.00839 -0.0314 -0.00939 -0.0207 -0.0305
(0.0613) (0.0437) (0.0225) (0.0605) (0.0286) (0.0316) (0.0622)

No Incumbent Economic Activityt−1 -0.194 -0.233* -0.145 -0.192 -0.0584 -0.130** -0.194
(0.171) (0.134) (0.0918) (0.172) (0.0677) (0.0645) (0.171)

Previous Ownership Experience 0.00138 0.00141 0.00716* 0.00214 0.0233** 0.00337 0.00138
(0.00551) (0.00234) (0.00419) (0.00605) (0.0103) (0.00533) (0.00549)

Previous Industry Experience 0.0836*** 0.0692*** 0.0746*** 0.0775*** 0.0780*** 0.0782*** 0.0836***
(0.00685) (0.00704) (0.00407) (0.00628) (0.00542) (0.00405) (0.00715)

Number of Owners 0.228*** 0.177*** 0.117*** 0.200*** 0.0842** 0.174*** 0.228***
(0.0521) (0.0518) (0.0295) (0.0483) (0.0358) (0.0258) (0.0543)

Corporate Partner 0.632*** 0.565*** -0.0247 0.539*** 0.931* 0.966*** 0.632***
(0.166) (0.156) (0.292) (0.150) (0.512) (0.184) (0.162)

Family Control 0.114 0.114 -0.0153 0.0995 -0.0844 -0.0202 0.114
(0.181) (0.153) (0.100) (0.150) (0.113) (0.0860) (0.184)

Number of Observations (Startups) 20,675 41,570 66,678 20,675 25,088 60,740 109,411 20,675

Sample Away Away Away Away Inst. Entrants Home Home/Away Away
Neighborhood Year FE YES NO FSA YES YES YES YES NO
Cluster Level NeighYear Year NeighYear NeighYear Neigh Year NeighYear NeighYear Neigh
Notes: Table report results of estimating Equation (2). Dependent variable is the level of end-of-year revenue (Panel a) or end-of-year employment (Panel b) where end-of-year means end of the
founding year of the startup. Controls are labeled in the first column. The variables of interest are given by Log(Xt−1) that correspond to an aggregation of characteristics (employment or
revenue) of incumbent firms of industry j in block b within neighborhood n at time t− 1. Equation is estimated using PPML. Standard errors are clustered at the neighborhood-year level unless
stated otherwise.
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Table 5: Local Spillovers over Survival and Future Location Choices

(1) (2) (3) (4) (5) (6)
Alive
t+ 1

Alive
t+ 5

Move
Blocks
t+ 1

Move Neigh-
borhoods
t+ 1

Move
Blocks
t+ 5

Move Neigh-
borhoods
t+ 5

Log (Average Employment Same Industryt−1) 0.000245 0.0177** -0.159*** -0.173*** -0.0338*** -0.0341***
(0.00224) (0.00625) (0.0199) (0.018) (0.00479) (0.00369)

Log (Average Revenue Same Industryt−1) 0.000503 0.0000189 0.000953 0.00110 0.00367*** 0.00369***
(0.000632) (0.00191) (0.00479) (0.00434) (0.00133) (0.00133)

Number of Observations (Startups) 29,621 28,989 19,714 24,855 28,528 37,529
Neighborhood-Year FE, Industry-Year FE and City-Year FE. Sample: Away. Controls include: number of
incumbent firms, dummy of no economic activity, owners previous industry experience, owners previous
entrepreneurship experience, total number of owners, dummy of corporate partner, and dummy of family control.
Standard errors clustered at the neighborhood-year level.

Table 6: Spatial Decay

Same
Block

First Ring Second
Ring

Third
Ring

Number of
Observa-

tions
(Startups)

a) end-of-year Revenue
Log (Average Employment Same Industryt−1) 0.118** 0.0621* -0.0230 0.0154 30,318

(0.0489) (0.0350) (0.0508) (0.0280)
Log (Average Revenue Same Industryt−1) 0.0259** 0.00739 -0.0168* -0.00138

(0.0123) (0.0133) (0.0101) (0.00802)

b) end-of-year Employment
Log (Average Employment Same Industryt−1) 0.212*** 0.0280 0.0239 0.0118 20,675

(0.0428) (0.0332) (0.0275) (0.0242)
Log (Average Revenue Same Industryt−1) -0.0255* -0.0262*** -0.000222 0.00649

(0.0139) (0.00641) (0.0107) (0.00765)

Each panel is one regression. Coefficients correspond to a dummy for a group of industries interacted with the
variable in the first column. The following set of fixed effects is included in each regression Neighborhood-Year
FE, Industry-Year FE and City-Year FE. Sample: Away. Controls include: number of incumbent firms,
dummy of no economic activity, owners previous industry experience, owners previous entrepreneurship
experience, total number of owners, dummy of corporate partner, and dummy of family control. Standard
errors clustered at the neighborhood-year level.
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Table 7: Heterogeneity Across Industries

Information
and

Financial
Services

Manufacturing Professional
and

Business
Services

Retail,
Leisure

and
Hospitality

Transport
and

Wholesale
Trade

Number of
Observa-

tions
(Startups)

a) end-of-year Revenue
Log (Average Employment Same Industryt−1) -0.227** 0.812*** 0.0739 0.209*** 0.340** 30,318

(0.106) (0.189) (0.114) (0.0459) (0.126)
Log (Average Revenue Same Industryt−1) 0.0530** -0.0802* 0.0293* 0.00145 0.0143

(0.0187) (0.0442) (0.0159) (0.0129) (0.0185)

b) end-of-year Employment
Log (Average Employment Same Industryt−1) 0.000781 0.722*** 0.200 0.202*** 0.202* 20,675

(0.234) (0.175) (0.131) (0.0385) (0.115)
Log (Average Revenue Same Industryt−1) -0.00499 -0.0731** -0.0370* -0.0268* -0.0102

(0.0283) (0.0344) (0.0215) (0.0137) (0.0200)

Each panel is one regression. Coefficients correspond to a dummy for a group of industries interacted with the variable in the
first column. The following set of fixed effects is included in each regression Neighborhood-Year FE, Industry-Year FE and
City-Year FE. Sample: Away. Controls include: number of incumbent firms, dummy of no economic activity, owners previous
industry experience, owners previous entrepreneurship experience, total number of owners, dummy of corporate partner, and
dummy of family control. Standard errors clustered at the neighborhood-year level.

Table 8: Heterogeneity to Type of Exposure

Baseline
(same-
industry)

All Downstream Upstream Occ.
Similarity

a) end-of-year Revenue
Log (Average Employmentt−1) 0.120** 0.186*** 0.0437** 0.0407** 0.141***

(0.0523) (0.0296) (0.0147) (0.0149) (0.0261)
Log (Average Revenuet−1) 0.0273** 0.0319** 0.0907*** 0.100*** 0.0637***

(0.0129) (0.0145) (0.0130) (0.0135) (0.0131)

b) end-of-year Employment
Log (Average Employmentt−1) 0.218*** 0.209*** 0.0359** 0.0379** 0.173***

(0.0442) (0.0331) (0.0137) (0.0137) (0.0280)
Log (Average Revenuet−1) -0.0257* -0.0101 0.0418** 0.0435** 0.000121

(0.0139) (0.0173) (0.0202) (0.0205) (0.0199)

Each column is a different regression based in the specification of column (1) of Table (4), except the
variables in the left are weighted by cross-industry weights. Sample: Away. Controls include: number of
incumbent firms, dummy of no economic activity, owners previous industry experience, owners previous
entrepreneurship experience, total number of owners, dummy of corporate partner, dummy of family
control, Neighborhood-Year FE, Industry-Year FE and City-Year FE. Standard errors clustered at the
neighborhood-year level.
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Table 9: Descriptives of the Estimates Probabilities and Chosen Locations

Variable Mean Std.Dev. Min Max
Number of Neighborhoods 189.6 178.1 1.0 573
Rank of Chosen Neighborhood 31.29 67.48 1.0 573
Probability of Chosen Neighborhood 0.245 0.345 0.0 1.0
Maximum Neighborhood Probability 0.575 0.286 0.04 1.0
Distance of Chosen Neighborhood 168.8 686.5 0.0 4570
Probability of First Residential Neighborhood 0.691 0.461 0.0 1.0
Rank of First Residential Neighborhood 100.3 91.34 1.0 287
Note: These estimated probabilities are the result of a estimating
the conditional choice model using entrepreneurs demographics
and distance to their first residential neighborhood as instrument
for neighborhood choices.

Table 10: Block Level Spillovers Across Neighborhoods

(a) End of Year Revenue
Only Within Neighborhoods Distance to First Residence Distance to Prev Residence

δ
(j)
nt δ

(j)
nt δ

(j)
nt ×

star

P
(i,j)

nt

δ
(j)
nt ×

home

P
(i,j)

nt

δ
(j)
nt ×

star

P
(i,j)

nt

δ
(j)
nt ×

home

P
(i,j)

nt

Log (Average Employment Same Industryt−1) 0.120** 0.169*** 0.152*** 0.176*** 0.184*** 0.172***
(0.0523) (0.0197) (0.0323) (0.0311) (0.0389) (0.0362)

Log (Average Revenue Same Industryt−1) 0.0273** 0.0381*** 0.0299** 0.0183** 0.0165** 0.0198**
(0.0129) (0.0100) (0.0109) (0.00699) (0.00767) (0.00909)

Number of Observations (Startups) 30,318 247,594 125,676 125,676 125,676 125,676

(b) End of Year Employment
Only Within Neighborhoods Distance to First Residence Distance to Prev Residence

δ
(j)
nt δ

(j)
nt δ

(j)
nt ×

star

P
(i,j)

nt

δ
(j)
nt ×

home

P
(i,j)

nt

δ
(j)
nt ×

star

P
(i,j)

nt

δ
(j)
nt ×

home

P
(i,j)

nt

Log (Average Employment Same Industryt−1) 0.218*** 0.316*** 0.319*** 0.313*** 0.312*** 0.294***
(0.0442) (0.0167) (0.0358) (0.0396) (0.0428) (0.0400)

Log (Average Revenue Same Industryt−1) -0.0257* -0.0159** -0.0260** -0.0223** -0.0310** -0.0229**
(0.0139) (0.00532) (0.00919) (0.0100) (0.00986) (0.0111)

Number of Observations (Startups) 20,675 249,938 88,687 87,760 89,666 86,325
Fixed Effects
FE: δ(j)nt × P(i,j)

nt , Industry-Year FE and City-Year FE.
Same controls as benchmark regression.

53


	1 Introduction
	2 Data
	2.1 Firm Classification
	2.2 Location characteristics

	3 Economic Neighborhoods
	3.1 Constructing Economic Neighborhoods
	3.1.1 Propensity Score
	3.1.2 Neighborhoods as propensity score clusters

	3.2 Characteristics of Economic Neighborhoods

	4 Local Spillovers
	4.1 Main Results
	4.2 Local Spillovers

	5 Local Spillovers and Neighborhood Sorting
	5.1 Model
	5.2 Correcting for Neighborhood Sorting
	5.3 Estimation details
	5.4 Local Spillovers and Location Sorting

	6 Conclusions

